Details about analysis of all prime orientable 3-manifolds with *gem-complexity* 14 (i.e. which admit crystallizations with 30 vertices and do not admit crystallizations with less than 30 vertices) are shown in the following Table 2.

Each row of the table corresponds to a different manifold:

- The first column gives information about the *minimal gem* for the considered manifold M^3 , that is the first element in the crystallization catalogue C^{30} representing M^3 : more precisely, r_j^{30} denotes the *j*-th crystallization with 30 vertices belonging to the catalogue C^{30} .
- The second column identifies M^3 via its JSJ decomposition or fibering structure.
- The third (resp. fourth) column contains the first homology group (resp. the geometric structure¹) for M^3 .
- The fifth column identifies M^3 within Matveev's tables of manifolds represented by spines of complexity ≤ 11 (see [M]: S.Matveev, *Table of closed orientable irreducible three*manifolds up to complexity 11, available at the Web page: http://www.topology.kb.csu.ru/ ~recognizer); more precisely, c_x means that M^3 is the x-th element of Matveev's table of complexity c closed orientable 3-manifolds.

As far as the identification of M^3 (contained in the second column) is concerned, the following notations are used:

- \mathbb{S}^3/G is the quotient space of \mathbb{S}^3 by the action of the group G; the involved groups are (direct products of) cyclic groups \mathbb{Z}_n $(n \in \mathbb{Z}^+)$, or groups of type $Q_{4n} = \langle x, y | x^2 = (xy)^2 = y^n \rangle$, $D_{2^k(2n+1)} = \langle x, y | x^{2^k} = 1, y^{2n+1} = 1, xyx^{-1} = y^{-1} \rangle$ $(n \in \mathbb{Z}^+)$;
- $(F, (p_1, q_1), \ldots, (p_k, q_k), (1, b))$ is the Seifert fibered manifold with base surface F, twisting parameter b and k disjoint fibres, having (p_i, q_i) , $i = 1, \ldots, k$ as normalized parameters;
- for each matrix $A \in GL(2; \mathbb{Z})$ with det(A) = +1, $TB(A) = T \times I/A$ is the orientable torus bundle over \mathbb{S}^1 with monodromy induced by A;
- for each matrix $A \in GL(2; \mathbb{Z})$ with $\det(A) = -1$, $(K \times I) \cup (K \times I)/A$ is the orientable 3-manifold obtained by pasting together, according to A, two copies of the orientable I-bundle over the Klein bottle K;
- $H_1 \bigcup_A H_2$ is the graph manifold obtained by gluing Seifert manifold H_1 and Seifert manifold H_2 (whose base surfaces are either the annulus \mathbb{A} or the disc \mathbb{D}) along their boundary tori by means of the attaching map associated to matrix A;

¹Geometric structure, if any, is given according to [P.Scott, *The geometries of 3-manifolds*, Bull. London Math. Soc. **15** (1983), 401-487]; the symbol "-" is used to denote a non-geometric manifold.

- $Q_i(p,q)$ denotes the manifold obtained as Dehn filling with parameters (p,q) of the hyperbolic manifold Q_i of finite volume and with a single cusp (see the table of manifolds with a single cusp in the SnapPea software by Weeks, available for anonimous FTP from www.geometrygames.org/SnapPea).

minimal gem	prime orientable 3-manifold M ³	$\mathbf{H_1}(\mathbf{M^3})$	geometry	position in [M]
r_{1203}^{30}	S^{3}/D_{80}	\mathbb{Z}_{16}	S^3	644
r^{30}_{1053}	\mathbb{S}^3/D_{112}	\mathbb{Z}_{16}	S^3	6 ₄₈
r^{30}_{18250}	$\mathbb{S}^3/(Q_{28} \times Z_5)$	\mathbb{Z}_{20}	S^3	649
r_{21444}^{30}	$\mathbb{S}^3/(Q_{32} \times Z_5)$	$\mathbb{Z}_2 + \mathbb{Z}_{10}$	S^3	651
r_{1045}^{30}	$\mathbb{S}^3/(P_{48}\times Z_{11})$	\mathbb{Z}_{22}	S^3	6 ₅₇
r_{1035}^{30}	$\mathbb{S}^3/(P_{48} \times Z_5)$	\mathbb{Z}_{10}	S^3	6 ₅₆
r_{1040}^{30}	$\mathbb{S}^3/(P_{48} \times Z_7)$	\mathbb{Z}_{14}	S^3	6_{55}
r^{30}_{19178}	$\mathbb{S}^3/(P_{120} \times Z_{23})$	\mathbb{Z}_{23}	S^3	6 ₆₁
r^{30}_{17733}	$\mathbb{S}^{3}/(P_{120} \times Z_{17})$	\mathbb{Z}_{17}	S^3	6 ₆₀
r_{1122}^{30}	$\mathbb{S}^3/(P_{120} \times Z_{13})$	\mathbb{Z}_{13}	S^3	6_{59}
r^{30}_{21303}	$(\mathbb{S}^2, (2, 1), (3, 1), (7, 3), (1, -1))$	\mathbb{Z}_{11}	$SL_2(\mathbb{R})$	7_{120}
r^{30}_{17842}	$(\mathbb{S}^2, (2, 1), (3, 1), (8, 1), (1, -1))$	\mathbb{Z}_2	$SL_2(\mathbb{R})$	8 ₂₂₆
r^{30}_{21350}	$(\mathbb{S}^2, (2, 1), (3, 1), (8, 3), (1, -1))$	\mathbb{Z}_{10}	$SL_2(\mathbb{R})$	7 ₁₂₇
r^{30}_{28623}	$(\mathbb{S}^2, (2, 1), (3, 1), (9, 2), (1, -1))$	\mathbb{Z}_3	$SL_2(\mathbb{R})$	8 ₂₃₁
r^{30}_{44846}	$(\mathbb{S}^2, (2, 1), (3, 1), (11, 2), (1, -1))$	0	$SL_2(\mathbb{R})$	8243
r^{30}_{17755}	$(\mathbb{S}^2, (2, 1), (4, 1), (5, 2), (1, -1))$	\mathbb{Z}_6	$SL_2(\mathbb{R})$	7 ₁₃₄

(Table 2 continues...)

minimal gem	prime orientable 3-manifold M ³	$H_1(M^3) \\$	geometry	position in [M]
r^{30}_{45301}	$(\mathbb{S}^2, (2, 1), (4, 1), (7, 2), (1, -1))$	\mathbb{Z}_2	$SL_2(\mathbb{R})$	8271
r^{30}_{48748}	$(\mathbb{S}^2, (2, 1), (5, 1), (5, 1), (1, -1))$	\mathbb{Z}_5	$SL_2(\mathbb{R})$	8283
r^{30}_{48763}	$(\mathbb{S}^2, (2, 1), (5, 2), (5, 2), (1, -1))$	\mathbb{Z}_{15}	$SL_2(\mathbb{R})$	7 ₁₃₈
r^{30}_{19485}	$(\mathbb{S}^2, (3, 2), (3, 2), (3, 2), (1, -1))$	$\mathbb{Z}_3 + \mathbb{Z}_9$	Nil	6 ₆₇
r^{30}_{15814}	$(\mathbb{S}^2, (3, 1), (3, 2), (3, 2), (1, -1))$	$\mathbb{Z}_3 + \mathbb{Z}_6$	Nil	6 ₆₆
r^{30}_{20091}	$TB\begin{pmatrix}1 & 0\\ 3 & 1\end{pmatrix}$	$\mathbb{Z}_3 + \mathbb{Z} + \mathbb{Z}$	Nil	8377
r^{30}_{56760}	(T, (2, 1))	$\mathbb{Z} + \mathbb{Z}$	$SL_2(\mathbb{R})$	9 ₉₀₂
r_{21193}^{30}	$(\mathbb{RP}^2, (2, 1), (3, 1))$	\mathbb{Z}_{24}	$SL_2(\mathbb{R})$	7 ₁₆₄
r_{21188}^{30}	$(\mathbb{RP}^2, (2, 1), (3, 2))$	\mathbb{Z}_{24}	$SL_2(\mathbb{R})$	7_{165}
r^{30}_{20090}	$TB\begin{pmatrix} -1 & 0\\ 3 & -1 \end{pmatrix}$	$\mathbb{Z}_4 + \mathbb{Z}$	Nil	8392
r^{30}_{56762}	(K, (2, 1))	$\mathbb{Z}_8 + \mathbb{Z}$	$SL_2(\mathbb{R})$	9941
r^{30}_{17038}	$TB\begin{pmatrix} -4 & 1\\ -1 & 0 \end{pmatrix}$	$\mathbb{Z}_6 + \mathbb{Z}$	Sol	8393
r^{30}_{17043}	$TB\begin{pmatrix} 4 & -1\\ 1 & 0 \end{pmatrix}$	$\mathbb{Z}_2 + \mathbb{Z}$	Sol	8394
r_{56755}^{30}	$\left (\mathbb{A}, (2,1), (1,-2)) \bigcup_{\substack{(0,1)\\1=0}} (\mathbb{A}, (2,1), (1,-2)) \right $	$\mathbb{Z}_7 + \mathbb{Z}$	_	9_{952}
r^{30}_{56759}	$(\mathbb{A}, (2, 1), (1, -1)) \bigcup_{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}} (\mathbb{A}, (2, 1), (1, -1))$	$\mathbb{Z}_5 + \mathbb{Z}$	-	9 ₉₅₀

(Table 2 continues...)

minimal gem	prime orientable 3-manifold M ³	$\mathbf{H_1}(\mathbf{M^3})$	geometry	position in [M]
r^{30}_{21476}	$(K \stackrel{\sim}{\times} I) \cup (K \stackrel{\sim}{\times} I) / \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix}$	$\mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_4$	Sol	7 ₁₇₁
r^{30}_{45716}	$(K \stackrel{\sim}{\times} I) \cup (K \stackrel{\sim}{\times} I) / \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix}$	$\mathbb{Z}_4 + \mathbb{Z}_4$	Sol	7 ₁₆₉
r^{30}_{19144}	$(\mathbb{D}, (2,1), (2,1), (1,0)) \cup \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} (\mathbb{D}, (2,1), (3,2), (1,0))$	\mathbb{Z}_4	_	7_{173}
r^{30}_{18104}	$(\mathbb{D}, (2, 1), (2, 1), (1, 0)) \bigcup_{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}} (\mathbb{D}, (2, 1), (3, 2), (1, -1))$	\mathbb{Z}_{20}	-	7 ₁₇₅
r^{30}_{19251}	$(\mathbb{D}, (2, 1), (2, 1), (1, 0)) \cup \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} (\mathbb{D}, (2, 1), (3, 1), (1, -1))$	$\mathbb{Z}_2 + \mathbb{Z}_2$	-	8410
r^{30}_{19087}	$(\mathbb{D}, (2, 1), (2, 1), (1, 0)) \bigcup_{\substack{0 \\ 1 \\ 0}} (\mathbb{D}, (2, 1), (3, 1), (1, -1))$	\mathbb{Z}_{28}	-	7 ₁₇₄
r_{1111}^{30}	$(\mathbb{D}, (2,1), (2,1), (1,0)) \bigcup_{\substack{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}} (\mathbb{D}, (2,1), (3,1), (1,0))$	\mathbb{Z}_4	-	7 ₁₇₂
r^{30}_{56897}	$Q_1(2,-3)$	$\mathbb{Z}_5 + \mathbb{Z}_5$	H^3	9 ₁₁₅₁
r^{30}_{45332}	$Q_4(2,-1)$	$\mathbb{Z}_3 + \mathbb{Z}_6$	H^3	9 ₁₁₅₃
r^{30}_{56912}	$Q_{10}(2,-1)$	$\mathbb{Z}_3 + \mathbb{Z}_9$	H^3	10 ₃₀₆₃

Table 2

The following statement summarizes the obtained classification of closed orientable prime 3-manifolds with gem-complexity 14:

Theorem I - There exist exactly forty-one closed connected prime orientable 3-manifolds, which admit a coloured triangulation consisting of 30 tetrahedra, and do not admit a coloured triangulation consisting of less than 30 tetrahedra. Among them, there are:

- 10 elliptic 3-manifolds;
- 17 Seifert non-elliptic 3-manifolds (in particular, 2 torus bundles with Nil geometry);
- 2 torus bundles with Sol geometry;
- 2 manifolds of type $(K \times I) \cup (K \times I)/A$, i.e. the ones associated to matrices $\begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix}$, with Sol geometry; they are the geometric graph manifolds $(\mathbb{D}, (2, 1), (2, 1), (1, -1)) \bigcup_{\substack{1 & 2 \\ 1 & 1 \end{pmatrix}} (\mathbb{D}, (2, 1), (2, 1), (1, -1)) \text{ and}$ $(\mathbb{D}, (2, 1), (2, 1), (1, 0)) \bigcup_{\substack{0 & 1 \\ 1 & 0 \end{pmatrix}} (\mathbb{D}, (2, 1), (2, 1), (1, 1)) \text{ respectively;}$
- 7 non-geometric graph manifolds;
- 3 hyperbolic Dehn-fillings (of the complement of link 6_1^3).