Details about analysis of the prime 3-manifolds represented in the catalogue C^{28} are shown in the following Table, where each row corresponds to a different manifold.

The first column of the Table contains Lins's notation for the first crystallization in C^{28} representing the considered 3-manifold: more precisely, r_j^i denotes the *j*-th crystallization with *i* vertices belonging to the catalogue.

The second column contains the name of the represented manifold according to Lins's notations¹, which is followed - when it is necessary - by the corresponding Matveev's description² and/or the associated Seifert structure.

For sake of completeness, we have also included both the first homology group and the geometric structure³ of the manifold, which appear respectively in the third and fourth column.

minimal gem	prime orientable 3-manifold M ³	${ m H_1}({ m M^3})$	geometry	upper bound for $\mathbf{c'_{GM}(M^3)}$	$\mathbf{c}(\mathbf{M^3})$
r_{1}^{2}	\mathbb{S}^3	0	S^3	0	0
r_{1}^{8}	L(2,1)	\mathbb{Z}_2	"	0	0
r_1^{12}	L(3,1)	\mathbb{Z}_3	>>	0	0
$r_1^{16} r_2^{16}$	$L(5,2) \\ L(4,1)$	\mathbb{Z}_5 \mathbb{Z}_4))))	1 1	1
r_1^{18}	$QUAT = \mathbb{S}^3/Q_8$	$\oplus_2 \mathbb{Z}_2$	"	2	2
$\begin{array}{c} r_1^{20} \\ r_2^{20} \\ r_4^{20} \\ r_5^{20} \\ r_9^{20} \\ r_9^{20} \\ \end{array}$	$L(8,3)$ $L(5,1)$ $S^{3} / < 3, 2, 2 \ge S^{3} / Q_{12}$ $L(7,2)$ $S^{1} \times S^{2}$ $BINTET = S^{3} / P_{24}$ $S^{3} / (C_{3} \times_{i} C_{8}) = S^{3} / D_{24}$	\mathbb{Z}_8 \mathbb{Z}_5 \mathbb{Z}_4 \mathbb{Z}_7 \mathbb{Z} \mathbb{Z}_3 \mathbb{Z}_8	$S^{2} \times \mathbb{R}$	2 2 3 2 0 4 4	$2 \\ 2 \\ 3 \\ 2 \\ 0 \\ 4 \\ 4$

¹Lins's notations (see [2]) are improved by the identification of five torus bundles arisen from [1]. ²See Appendix 9.1 and Appendix 9.3 of [3].

³Geometric structure is given according to [5].

gem	3 -manifold M^3	$\mathbf{H_1}(\mathbf{M^3})$	geometry	$\mathbf{c_{GM}(M^3)}$	$c(M^3)$
r_1^{24}	$EUCLID_0 = TB \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$	$\oplus_3 \mathbb{Z}$	E^3	6	6
$\begin{array}{c} r_{2}^{24} \\ r_{4}^{24} \end{array}$	$BINDOD = S^{3}/P_{120}$ S^{3}/(C_{5} \times_{i} C_{8}) = S^{3}/D_{40}	$\begin{array}{c} 0 \\ \mathbb{Z}_8 \end{array}$	$S^{3}_{,,}$	5 5	5 5
r_{5}^{24}	$EUCLID_1 = (K\tilde{\times}I) \cup (K\tilde{\times}I) / \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$	$\oplus_2 \mathbb{Z}_4$	E^3	6	6
r_{6}^{24}	$EUCLID_3 = TB \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\oplus_2 \mathbb{Z}_2 \oplus \mathbb{Z}$	E^3	6	6
r_{7}^{24}	$EUCLID_2 = TB \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$	$\mathbb{Z}\oplus\mathbb{Z}_3$	E^3	6	6
r_{13}^{24}	$S^3/(C_3 \times Q_8) = \mathbb{S}^3/(Q_8 \times \mathbb{Z}_3)$	$\mathbb{Z}_2 \oplus \mathbb{Z}_6$	S^3	4	4
r_{14}^{-1}	L(9,2)	<u>⊿</u> 9 77	22	う う	ろ
r_{21} r^{24}	L(10, 3) L(11, 3)	∠10 7	"	3 3	2 2
r_{22}^{22}	L(13,5)	 ℤ₁₂	>>	3	3
r_{22}^{3}	$BINOCT = S^3/P_{48}$	\mathbb{Z}_{13}	"	5	5
r_{32}^{28}	L(12,5)	\mathbb{Z}_{12}	"	3	3
r_{33}^{32}	L(6,1)	\mathbb{Z}_6	"	3	3
r_{154}^{24}	\mathbb{S}^3/Q_{16}	$\oplus_2 \mathbb{Z}_2$	"	4	4
r_4^{26}	$S^3/(Q_8 \times_3 C_{15}) = \mathbb{S}^3/(P_{24} \times \mathbb{Z}_5)$	\mathbb{Z}_{15}	"	6	5
r_{5}^{26}	$E_2(0,2) = (K\tilde{\times}I) \cup (K\tilde{\times}I) / \begin{pmatrix} 1 & 1\\ 1 & 0 \end{pmatrix}$	$\oplus_2 \mathbb{Z}_4$	Nil	6	6
r_{c}^{26}	$S^{3}/(C_{5} \times_{i} C_{12}) = S^{3}/(Q_{20} \times \mathbb{Z}_{2})$	Z12	S^3	5	5
r_{8}^{26}	$S^{3}/(Q_{8} \times_{3} C_{9}) = \mathbb{S}^{3}/P_{72}$	\mathbb{Z}_9	22	5	5
r_{10}^{26}	$S^3/(C_7 \times \langle 5, 3, 2 \rangle) = S^3/(P_{120} \times \mathbb{Z}_7)$	\mathbb{Z}_7	"	6	6
r_{11}^{26}	$EUCLID_5 = TB \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}$	$\mathbb{Z}\oplus\mathbb{Z}_2$	E^3	6	6
r_{13}^{26}	$E_2(2,1) = TB \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}$	$\mathbb{Z}\oplus\mathbb{Z}_4$	Nil	6	6
r_{14}^{26}	$TB\begin{pmatrix} 1 & 0\\ 1 & 1 \end{pmatrix}$	$\oplus_2 \mathbb{Z}$	Nil	6	6
r_{31}^{26}	$EUCLID_4 = TB\begin{pmatrix} 1 & -1\\ 1 & 0 \end{pmatrix}$	Z	E^3	6	6
r_{65}^{26}	$S^3/(C_3 \times Q_{16}) = \mathbb{S}^3/(Q_{16} \times \mathbb{Z}_3)$	$\mathbb{Z}_2\oplus\mathbb{Z}_6$	S^3	5	5

gem	3-manifold M ³	${ m H_1}({ m M^3})$	geometry	$c_{GM}(M^3)$	c (M ³)
r_1^{28}	$[24, S_2^1] = (\mathbb{RP}^2, (2, 1), (3, -1))$	\mathbb{Z}_{24}	$SL_2\mathbb{R}$	8	7
r_2^{18}	$[3, 5^2, S_6^5] = (\mathbb{S}^2, (3, 1), (3, 1), (5, -3))$	\mathbb{Z}_3	22	8	7
$r_3^{\overline{28}}$	$[2^2, 3^2 \times 6, S_{10}^9] =$ = (\$\mathbb{S}^2, (2, 1), (2, 1), (2, 1), (3, -4))	$\oplus_2 \mathbb{Z}_2$	$SL_2\mathbb{R}$	8	7
r_{5}^{28}	$TB\begin{pmatrix} 0 & 1\\ -1 & 3 \end{pmatrix}$	Z	Sol	7	7
r_{6}^{28}	$[2^2 \times 4, S_1^4] = (K \tilde{\times} I) \cup (K \tilde{\times} I) / \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$	$\oplus_2 \mathbb{Z}_2 \oplus \mathbb{Z}_4$	Nil	6	6
r_{7}^{28}	$S^3/(C_5 \times Q_8) = \mathbb{S}^3/(Q_8 \times \mathbb{Z}_5)$	$\mathbb{Z}_2\oplus\mathbb{Z}_{10}$	S^3	5	5
r_{9}^{28}	$[3, 4^2, S_3^4] = (\mathbb{S}^2, (3, 1), (3, 1), (4, -3))$	\mathbb{Z}_3	$SL_2\mathbb{R}$	7	7
r_{10}^{28}	$TB\begin{pmatrix} 0 & 1\\ -1 & -3 \end{pmatrix}$	$\mathbb{Z}\oplus\mathbb{Z}_5$	Sol	7	7
r_{13}^{28}	L(21,8)	\mathbb{Z}_{21}	S^3	4	4
r_{14}^{28}	L(16,7)	\mathbb{Z}_{16}	"	4	4
r_{19}^{28}	$[4^2, S_1^8] = (\mathbb{RP}^2, (2, 1), (2, 3))$	$\oplus_2 \mathbb{Z}_4$	Nil	7	7
r_{27}^{28}	$S^{3}/(C_{3} \times_{i} C_{16}) = S^{3}/D_{48}$	\mathbb{Z}_{16}	S^3	5	5
r_{29}^{28}	$S^{3}/(C_{3} \times_{i} C_{20}) = S^{3}/(Q_{12} \times \mathbb{Z}_{5})$	\mathbb{Z}_{20}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5	5
r_{33}^{20}	L(13,3)	\mathbb{Z}_{13}		4	
r_{34}^{20}	$[3^{2}, S_{1}^{a}] = (\mathbb{S}^{2}, (3, 2), (3, 1), (3, -2))$	$\oplus_2 \mathbb{Z}_3$	IN11 C3	0 4	
r_{41}^{-28}	$ \begin{array}{c} L(19,7) \\ TB \begin{pmatrix} -1 & 0 \end{pmatrix} \end{array} $	\mathbb{Z}_{19} $\oplus \mathbb{Z} \oplus \mathbb{Z}$	S° Nil	4	
T_{42}	$ID \begin{pmatrix} -2 & -1 \end{pmatrix}$	$\oplus_2 \mathbb{Z}_2 \oplus \mathbb{Z}$	1111	1	(
r_{49}^{28}	L(11,5) = L(11,2)	\mathbb{Z}_{11}	S^3	4	4
r_{54}^{28}	L(18,5)	\mathbb{Z}_{18}	"	4	4
r_{56}^{28}	$S^{3}/(C_{3} \times Q_{32}) = \mathbb{S}^{3}/(Q_{32} \times \mathbb{Z}_{3})$	$\mathbb{Z}_2\oplus\mathbb{Z}_6$	"	6	6
r_{65}^{20}	L(17,5)	\mathbb{Z}_{17}	"	4	4
r_{70}^{20}	L(15, 4)	\mathbb{Z}_{15}	22	4	4
r_{71}^{20}	L(14,3)	\mathbb{Z}_{14}		4 7	
r_{172}^{7}	< 7, 3, 2 > - (S, (2, 1), (3, 1), (7, -0)) $< 5, 5, 2 > 2 - (S^2, (2, 1), (4, 1), (5, -4))$	0 Ze	$SL_2\mathbb{R}$	7	
r^{202}_{28}	< 5, 5, 2 > 2 - (5, (2, 1), (4, 1), (5, -4)) $< 7, 3, 2 > 5 - (5^2, (2, 1), (3, 1), (7, -5))$	7	$SL_2\mathbb{R}$	7	
r_{203}^{203}	L(7,1)	\mathbb{Z}_{5}	S^3	4	4
r_{280}^{28}	$TB\begin{pmatrix}1 & -2\\0 & 1\end{pmatrix}$	$\oplus_2 \mathbb{Z} \oplus \mathbb{Z}_2$	Nil	7	7
r^{28}_{22}	$\int_{-\infty}^{0} \frac{1}{\sqrt{C_{22} \times C_{12}}} = \frac{\sqrt{0}}{3} \int_{-\infty}^{0} \frac{1}{\sqrt{C_{22} \times \mathbb{Z}_{22}}}$	7/10	S^3	6	6
r_{28}^{402}	$S^{3}/(C_{7} \times_{i} C_{8}) = S^{3}/D_{56}$	Z8	"	6	6
r_{2418}^{2314}	$S^3/(C_5 \times_i C_4) = \mathbb{S}^3/Q_{20}$	\mathbb{Z}_4	"	5	5

Table 1

As far as Matveev's notation is concerned, the following conventions are used:

- $(F, (p_1, q_1), \ldots, (p_k, q_k))$ is the Seifert fibered manifold with base surface F and k disjoint fibres, having (p_i, q_i) , $i = 1, \ldots, k$ as non-normalized parameters;
- for each matrix $A \in GL(2; \mathbb{Z})$ with det(A) = +1, $TB(A) = T \times I/A$ is the orientable torus bundle over S^1 with monodromy induced by A;
- for each matrix $A \in GL(2; \mathbb{Z})$ with $\det(A) = -1$, $(K \times I) \cup (K \times I)/A$ is the orientable 3-manifold obtained by pasting together, according to A, two copies of the orientable I-bundle over the Klein bottle K;
- \mathbb{S}^3/G is the quotient space of \mathbb{S}^3 by the action of the group G; the involved groups are (direct products of) cyclic groups \mathbb{Z}_n , $n \in \mathbb{Z}^+$, or belong to the following list:

$$\begin{split} Q_{4n} = &< x, y \mid x^2 = (xy)^2 = y^n >; \\ D_{2^k(2n+1)} = &< x, y \mid x^{2^k} = 1, y^{2n+1} = 1, xyx^{-1} = y^{-1} >; \\ P_{24} = &< x, y \mid x^2 = (xy)^3 = y^3, x^4 = 1 >; \\ P_{48} = &< x, y \mid x^2 = (xy)^3 = y^4, x^4 = 1 >; \\ P_{120} = &< x, y \mid x^2 = (xy)^3 = y^5, x^4 = 1 >; \\ P_{72} = &< x, y, z \mid x^2 = (xy)^2 = y^2, zxz^{-1} = xy, z^9 = 1 >. \end{split}$$

As a consequence of our "translation" work on catalogue C^{28} , Lins's classification of the encoded 3-manifolds is improved by a complete description of their topological structure:

Proposition The sixty-nine closed connected prime orientable 3-manifolds which admit a coloured triangulation consisting of at most 28 tetrahedra are:

- \$\mathbf{S}^3;
- $\mathbb{S}^2 \times \mathbb{S}^1$;
- the six Euclidean orientable 3-manifolds;
- twenty-three lens spaces;
- twenty-one quotients of \mathbb{S}^3 by the action of their finite (non-cyclic) fundamental groups;
- six (non euclidean) torus bundles TB(A):
 - the Nil ones, with complexity 6, associated to matrices $\begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$;⁴ - the Nil ones, with complexity 7, associated to matrices $\begin{pmatrix} -1 & 0 \\ -2 & -1 \end{pmatrix}$ and $\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$;⁵ - the Sol ones, with complexity 7, associated to matrices $\begin{pmatrix} 0 & 1 \\ -1 & 3 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ -1 & -3 \end{pmatrix}$;⁶

⁴In [3], they are denoted respectively by 6_{68} and 6_{69} .

⁵In [3], they are denoted respectively by 7_5^* and 7_4^* , and in [4] by 162 and 163.

⁶In [3], they are are denoted respectively by 7_7^* and 7_6^* , and in [4] by 167 and 168.

- two Nil 3-manifolds of type $(K \tilde{\times} I) \cup (K \tilde{\times} I)/A$, with complexity 6, i.e. the ones associated to matrices $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$; ⁷
- another Nil 3-manifold with complexity 6, i.e. the manifold with Seifert structure $(\mathbb{S}^2, (3, 2), (3, 1), (3, -2)); ^8$
- eight Seifert 3-manifolds with complexity 7:
 - the Nil 3-manifold $(\mathbb{RP}^2, (2, 1), (2, 3)); 9$
 - the $SL_2\mathbb{R}$ 3-manifold $(\mathbb{RP}^2, (2,1), (3,-1))$,¹⁰ which may be also seen as $D_2 \cup (K \tilde{\times} I) / \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (D_2 being the oriented Seifert manifold ($D^2, (2,1), (3,2)$), equipped with the coordinate system (μ, λ) , μ being a meridian of $D^2 \times \mathbb{S}^1$ and λ being a fiber of the Seifert structure);
 - the $SL_2\mathbb{R}$ 3-manifold (S², (2,1), (2,1), (2,1), (3,-4)),¹¹ which may be also seen as $D_2 \cup (K \tilde{\times} I) / \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$;
 - the $SL_2\mathbb{R}$ 3-manifold $(\mathbb{S}^2, (2, 1), (3, 1), (7, -6)); {}^{12}$
 - the $SL_2\mathbb{R}$ 3-manifold $(\mathbb{S}^2, (2, 1), (4, 1), (5, -4));$ ¹³
 - the $SL_2\mathbb{R}$ 3-manifold $(\mathbb{S}^2, (3, 1), (3, 1), (5, -3));$ ¹⁴
 - the $SL_2\mathbb{R}$ 3-manifold $(\mathbb{S}^2, (3, 1), (3, 1), (4, -3));$ ¹⁵
 - the $SL_2\mathbb{R}$ 3-manifold $(\mathbb{S}^2, (2, 1), (3, 1), (7, -5))$.¹⁶

References

- M.R.Casali, Representing and recognizing torus bundles over S¹, Boletin de la Sociedad Matematica Mexicana (special issue in honor of Fico), 10 (3) (2004), 89-106.
- [2] S.Lins, Gems, computers and attractors for 3-manifolds, Knots and Everything 5, World Scientific, 1995.

- 14 In [4] it is denoted by 142.
- 15 In [4] it is denoted by 140.
- 16 In [4] it is denoted by 110.

⁷In [3], they are denoted respectively by 6_{74} and 6_{72} .

⁸In [3] it is denoted by 6_{62} .

⁹In [3] it is denoted by 7^*_{11} , and in [4] by 158.

 $^{^{10}\}mathrm{In}$ [3] it is denoted by $7^*_{13},$ and in [4] by 159.

¹¹In [3] it is denoted by 7^*_{18} , and in [4] by 155.

 $^{^{12}}$ In [3] it is denoted by 7_2^* , and in [4] by 166.

¹³In [3] it is denoted by 7_3^* , and in [4] by 164.

- [3] S.Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms and Computation in Mathematics 9, Springer, 2003.
- [4] B.Martelli C.Petronio, *Census* 7, Table of closed orientable irreducible 3-manifolds having complexity 7, available from the Web page http://www.dm.unipi.it/pages/petronio/public_html/files/3D/c9/c9_census.html
- [5] P.Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.