CRYSTALLIZATIONS OF PL 4-MANIFOLDS

Maria Rita Casali

Università di Modena e Reggio Emilia (Italy)

casali@unimore.it

Meeting "Colored Graphs and Random Tensors" January 14-15, LPT Orsay

TOP category

• topological manifolds, up to homeomorphisms

TOP category

• topological manifolds, up to homeomorphisms

PL category

• triangulated manifolds (PL-manifolds), up to PL-isomorphisms

TOP category

• topological manifolds, up to homeomorphisms

PL category

• triangulated manifolds (PL-manifolds), up to PL-isomorphisms

DIFF category

• smooth manifolds, up to diffeomorphisms

- TOP=PL (any topological 3-manifold admits a PL-structure which is unique up to PL-isomorphisms)
- PL=DIFF (each PL-structure on a 3-manifold is smoothable in a unique way up to diffeomorphisms)

n=3

- TOP=PL (any topological 3-manifold admits a PL-structure which is unique up to PL-isomorphisms)
- PL=DIFF (each PL-structure on a 3-manifold is smoothable in a unique way up to diffeomorphisms)

- PL=DIFF (each PL-structure on a 4-manifold is smoothable and each PL-isomorphism is isotopic to a diffeomorphism)
- TOP≠DIFF

n=3

- TOP=PL (any topological 3-manifold admits a PL-structure which is unique up to PL-isomorphisms)
- PL=DIFF (each PL-structure on a 3-manifold is smoothable in a unique way up to diffeomorphisms)

- PL=DIFF (each PL-structure on a 4-manifold is smoothable and each PL-isomorphism is isotopic to a diffeomorphism)
- TOP≠DIFF
 - there are topological 4-manifolds admitting no smooth structure;

n=3

- TOP=PL (any topological 3-manifold admits a PL-structure which is unique up to PL-isomorphisms)
- PL=DIFF (each PL-structure on a 3-manifold is smoothable in a unique way up to diffeomorphisms)

- PL=DIFF (each PL-structure on a 4-manifold is smoothable and each PL-isomorphism is isotopic to a diffeomorphism)
- TOP≠DIFF
 - there are topological 4-manifolds admitting no smooth structure;
 - there can be non-diffeomorphic smooth structures on the same topological 4-manifold.

For **closed simply-connected oriented 4-manifolds** the well-known topological classification by Freedman is based on the **intersection form** defined on the second integral cohomology group of the manifold (modulo its torsion).

For **closed simply-connected oriented 4-manifolds** the well-known topological classification by Freedman is based on the **intersection form** defined on the second integral cohomology group of the manifold (modulo its torsion).

[Freedman, 1982]

- for an **even** form λ there is exactly one homeomorphism class of simply connected closed manifolds having λ as intersection form;
- for an **odd** form λ there are exactly two classes (distinguished by the Kirby-Siebenmann invariant in \mathbb{Z}_2), at most one of which admits smooth representatives (smoothness requires vanishing invariant).

[Donaldson, 1983] [Furuta, 2001]

Closed simply-connected smooth 4-manifolds have intersection forms of the following types:

$$r[1]\oplus r'[-1]$$
 $segin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$ $\pm 2n extstyle E_8\oplus tegin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$ with $t>2n$.

[Donaldson, 1983] [Furuta, 2001]

Closed simply-connected smooth 4-manifolds have intersection forms of the following types:

$$r[1]\oplus r'[-1]$$
 $s\begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$ $\pm 2nE_8\oplus t\begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$ with $t>2n$.

Up to now there is no classification of smooth structures on any given smoothable topological 4-manifold.

4-dimensional results: TOP vs DIFF

Finding non-diffeomorphic smooth structures on the same closed simply-connected topological manifold has long been an interesting problem.

4-dimensional results: TOP vs DIFF

Finding non-diffeomorphic smooth structures on the same closed simply-connected topological manifold has long been an interesting problem.

Some recent results:

[Akhmedov-Doug Park, 2010], [Akhmedov-Ishida-Doug Park, 2013]

There exist (infinitely many) non-diffeomorphic smooth structures on:

- $\#_{2h-1}\mathbb{CP}^2\#_{2h}(-\mathbb{CP}^2)$, for any integer $h \geq 1$
- $\#_{2h-1}(\mathbb{S}^2 \times \mathbb{S}^2)$, for $h \ge 138$
- $\#_{2h-1}(\mathbb{CP}^2\#(-\mathbb{CP}^2))$, for $h \ge 23$
- $\#_{2p}(\mathbb{S}^2 \times \mathbb{S}^2)$ and $\#_{2p}(\mathbb{CP}^2 \# (-\mathbb{CP}^2))$, for large enough integers p not divisible by 4.

4-dimensional results: TOP vs DIFF

Finding non-diffeomorphic smooth structures on the same closed simply-connected topological manifold has long been an interesting problem.

Some recent results:

[Akhmedov-Doug Park, 2010], [Akhmedov-Ishida-Doug Park, 2013]

There exist (infinitely many) non-diffeomorphic smooth structures on:

- $\#_{2h-1}\mathbb{CP}^2\#_{2h}(-\mathbb{CP}^2)$, for any integer $h \geq 1$
- $\#_{2h-1}(\mathbb{S}^2 \times \mathbb{S}^2)$, for $h \ge 138$
- $\#_{2h-1}(\mathbb{CP}^2\#(-\mathbb{CP}^2))$, for $h \ge 23$
- $\#_{2p}(\mathbb{S}^2 \times \mathbb{S}^2)$ and $\#_{2p}(\mathbb{CP}^2 \# (-\mathbb{CP}^2))$, for large enough integers p not divisible by 4.

The existence of exotic PL-structures on \mathbb{S}^4 , \mathbb{CP}^2 , $\mathbb{S}^2 \times \mathbb{S}^2$ or $\mathbb{CP}^2 \# \mathbb{CP}^2$ or $\mathbb{CP}^2 \# \mathbb{CP}^2$ is still an open problem!

In dimension $n \ge 4$, where $TOP \ncong PL$, a purely combinatorial approach to general PL-manifolds is useful if it yields:

- combinatorial moves which realize PL-homeomorphism (and not only TOP-homeomorphism);
- PL invariants (possibly distinguishing different PL structures on the same TOP-manifold), whose computation can be performed directly on the combinatorial objects.

In dimension $n \ge 4$, where $TOP \ncong PL$, a purely combinatorial approach to general PL-manifolds is useful if it yields:

- combinatorial moves which realize PL-homeomorphism (and not only TOP-homeomorphism);
- PL invariants (possibly distinguishing different PL structures on the same TOP-manifold), whose computation can be performed directly on the combinatorial objects.

Within crystallization theory, both tools are available!

In dimension $n \ge 4$, where $TOP \ncong PL$, a purely combinatorial approach to general PL-manifolds is useful if it yields:

- combinatorial moves which realize PL-homeomorphism (and not only TOP-homeomorphism);
- PL invariants (possibly distinguishing different PL structures on the same TOP-manifold), whose computation can be performed directly on the combinatorial objects.

Within crystallization theory, both tools are available!

In particular:

- the gem-complexity $k(M^n)$ of a PL n-manifold M^n is the integer p-1, where 2p is the minimum order of a crystallization of M^n ;
- the regular genus $\mathcal{G}(M^n)$ of an orientable (resp. non-orientable) PL n-manifold M^n is defined as the minimum genus (resp. half the minimum genus) of a surface into which a crystallization of M^n regularly embeds.

Regular genus and gem-complexity: lower bounds for n = 4

[Basak - Casali, 2015]

$$k(M^4) \geq 3\chi(M^4) + 10rk(M^4) - 6$$

$$\mathcal{G}(M^4) \geq 2\chi(M^4) + 5rk(M^4) - 4$$

where:

 $\chi(M^4) = \text{Euler characteristic of } M^4 \text{ (closed PL 4-manifold)}$ $rk(M^4) = \text{rank of the fundamental group } \pi_1(M^4) \text{ of } M^4$

Regular genus and gem-complexity: lower bounds for n = 4

[Basak - Casali, 2015]

$$k(M^4) \geq 3\chi(M^4) + 10rk(M^4) - 6$$

$$G(M^4) \geq 2\chi(M^4) + 5rk(M^4) - 4$$

where:

 $\chi(M^4)=$ Euler characteristic of M^4 (closed PL 4-manifold) $rk(M^4)=$ rank of the fundamental group $\pi_1(M^4)$ of M^4

In the simply-connected case:

$$k(M^4) \geq 3\beta_2(M^4)$$
 $\mathcal{G}(M^4) \geq 2\beta_2(M^4)$

where $\beta_2(M^4)$ = second Betti number of M^4

Hence, as a consequence of the up-to-date results about topological classification of simply connected PL 4-manifolds:

[Casali, 2012] [Casali - Cristofori, 2015]

Let M^4 be a simply-connected closed PL 4-manifold. If either $k(M^4) \leq 65$ or $\mathcal{G}(M^4) \leq 43$, then M^4 is TOP-homeomorphic to

$$(\#_r \mathbb{CP}^2) \# (\#_{r'} (-\mathbb{CP}^2))$$
 or $\#_s (\mathbb{S}^2 \times \mathbb{S}^2)$,

where
$$r + r' = \beta_2(M^4), \ s = \frac{1}{2}\beta_2(M^4)$$

Sketch of the proof:

By [Donaldson, 1983], only forms of type

$$r[1] \oplus r'[-1]$$
 or $s\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ or $\pm 2nE_8 \oplus k\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

can occur as intersection forms of a simply-connected smooth 4-manifold.

Sketch of the proof:

By [Donaldson, 1983], only forms of type

$$r[1] \oplus r'[-1]$$
 or $s\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ or $\pm 2nE_8 \oplus k\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

can occur as intersection forms of a simply-connected smooth 4-manifold.

On the other hand, by [Furuta, 2001], the forms of type

$$\pm 2nE_8 \oplus k \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 occur only if $k > 2n$, i.e. $\beta_2 \ge 22$.

Sketch of the proof:

By [Donaldson, 1983], only forms of type

$$r[1] \oplus r'[-1]$$
 or $s\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ or $\pm 2nE_8 \oplus k\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

can occur as intersection forms of a simply-connected smooth 4-manifold.

On the other hand, by [Furuta, 2001], the forms of type $\pm 2nE_8 \oplus k \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ occur only if k > 2n, i.e. $\beta_2 \ge 22$.

The thesis easily follows from the fact that both $k(M^4) \le 65$ and $\mathcal{G}(M^4) \le 43$ imply $\beta_2 < 22$.

• For every $n \ge 2$,

$$\mathcal{G}(M^n) = 0 \iff M^n \cong \begin{cases} \mathbb{S}^n & \text{if } \partial M^n = \emptyset \\ \#_h \mathbb{D}^n & \text{if } \partial M^n \text{ has } h \text{ connected components} \end{cases}$$

• For every $n \ge 2$,

$$\mathcal{G}(M^n) = 0 \iff M^n \cong \begin{cases} \mathbb{S}^n & \text{if } \partial M^n = \emptyset \\ \#_h \mathbb{D}^n & \text{if } \partial M^n \text{ has } h \text{ connected components} \end{cases}$$

• For every *n*-manifold M^n $(n \ge 3)$, $\mathcal{G}(M^n)$ is a non-negative integer invariant, so that

$$\mathcal{G}(M^n) \geq \mathcal{G}(\partial M^n)$$
 and $\mathcal{G}(M^n) \geq rk(M^n)$

where $rk(M^n)$ denotes the rank of the fundamental group $\pi_1(M^n)$;

• For every $n \ge 2$,

$$\mathcal{G}(M^n) = 0 \iff M^n \cong \begin{cases} \mathbb{S}^n & \text{if } \partial M^n = \emptyset \\ \#_h \mathbb{D}^n & \text{if } \partial M^n \text{ has } h \text{ connected components} \end{cases}$$

• For every *n*-manifold M^n $(n \ge 3)$, $\mathcal{G}(M^n)$ is a non-negative integer invariant, so that

$$\mathcal{G}(M^n) \geq \mathcal{G}(\partial M^n)$$
 and $\mathcal{G}(M^n) \geq rk(M^n)$

where $rk(M^n)$ denotes the rank of the fundamental group $\pi_1(M^n)$;

• $\mathcal{G}(M_1^n \# M_2^n) \leq \mathcal{G}(M_1^n) + \mathcal{G}(M_2^n)$, for any n.

• For every $n \ge 2$,

$$\mathcal{G}(M^n) = 0 \iff M^n \cong \begin{cases} \mathbb{S}^n & \text{if } \partial M^n = \emptyset \\ \#_h \mathbb{D}^n & \text{if } \partial M^n \text{ has } h \text{ connected components} \end{cases}$$

• For every *n*-manifold M^n ($n \ge 3$), $\mathcal{G}(M^n)$ is a non-negative integer invariant, so that

$$\mathcal{G}(M^n) \geq \mathcal{G}(\partial M^n)$$
 and $\mathcal{G}(M^n) \geq rk(M^n)$

where $rk(M^n)$ denotes the rank of the fundamental group $\pi_1(M^n)$;

• $\mathcal{G}(M_1^n \# M_2^n) \leq \mathcal{G}(M_1^n) + \mathcal{G}(M_2^n)$, for any n.

Conjecture I_n

 $\mathcal{G}(M_1^n \# M_2^n) = \mathcal{G}(M_1^n) + \mathcal{G}(M_2^n)$, for any M_1^n , M_2^n closed (orientable) PL *n*-manifolds.

The case of "low" regular genus

[Gagliardi, 1989] [Cavicchioli, 1989 - 1992] [Cavicchioli-Meschiari 1993]

• Let M^4 be an orientable 4-manifold, with $\partial M^4 = \emptyset$; then:

$$\mathcal{G}(M^4) = \rho \le 3 \quad \Longrightarrow \quad M^4 \cong \begin{cases} \#_{\rho}(\mathbb{S}^3 \times \mathbb{S}^1) \\ \#_{\rho-2}(\mathbb{S}^3 \times \mathbb{S}^1) \# \mathbb{CP}^2 \end{cases}$$

• Let M^4 be a non-orientable 4-manifold, with $\partial M^4 = \emptyset$; then:

$$\mathcal{G}(M^4) = \rho \leq 2 \implies M^4 \cong \#_{\rho}(\mathbb{S}^3 \widetilde{\times} \mathbb{S}^1)$$

The case of "low" regular genus

[Casali-Malagoli, 1997]

Let M^4 be an (orientable or non-orientable) 4-manifold, with $\partial M^4 \neq \emptyset$; then:

$$\mathcal{G}(M^4) = \rho \leq 2 \quad \Longrightarrow \quad M^4 \cong \begin{cases} \#_{\rho - \partial_{\rho}}(\mathbb{S}^3 \widetilde{\times} \mathbb{S}^1) \# \stackrel{(h)}{\mathbb{Y}}_{\partial_{\rho}}^{|\infty|} \\ \mathbb{CP}^2 \# (\#_h \mathbb{D}^4) \end{cases}$$

where $0 \le {}^{\partial} \rho = \mathcal{G}(\partial M^4) \le \rho$, $h \ge 1$ is the number of boundary

components and $\binom{h}{\mathbb{Y}_r^4}$ denotes the connected sum of $h \geq 1$ orientable or non-orientable 4-dimensional handlebodies of genus $\alpha_i \geq 0$ $(i=1,\ldots,h)$, so that $\sum_{i=1}^h \alpha_i = r$.

The case of "restricted gap" between regular genus and boundary regular genus

[Casali 1992]

Let M^4 be an (orientable or non-orientable) 4-manifold, with $h \ge 1$ boundary components. If $0 \le m \le 1$, then:

$$\mathcal{G}(M^4) - \mathcal{G}(\partial M^4) = m \implies M^4 \cong \#_m(\mathbb{S}^3 \widetilde{\times} \mathbb{S}^1) \#^{(h)} \widetilde{\mathbb{Y}}_{\partial_p}^{|_4}.$$

The case of "restricted gap" between regular genus and rank of the fundamental group

[Casali, 1996] [Casali-Malagoli, 1997]

Let M^4 be an (orientable or non-orientable) 4-manifold.

$$\bullet \ \mathcal{G}(M^4) = \mathsf{rk}(M^4) = \rho \quad \Longleftrightarrow \quad M^4 \cong \begin{cases} \#_{\rho}(\mathbb{S}^3 \widetilde{\times} \mathbb{S}^1) \\ \#_{\rho - \partial_{\rho}}(\mathbb{S}^3 \widetilde{\times} \mathbb{S}^1) \# \stackrel{(h)}{\mathbb{Y}}_{\partial_{\rho}}^4 \end{cases}$$

•
$$\mathcal{G}(M^4) \neq rk(M^4) \implies \mathcal{G}(M^4) - rk(M^4) \geq 2$$

•
$$\mathcal{G}(M^4) - rk(M^4) = 2$$
 and $\pi_1(M^4) = *_m \mathbb{Z}$ \iff

$$M^4 \cong \begin{cases} \#_m(\mathbb{S}^3 \widetilde{\times} \mathbb{S}^1) \# \mathbb{CP}^2 & \text{if } \partial M^4 = \emptyset \\ \#_{m-\partial_p}(\mathbb{S}^3 \widetilde{\times} \mathbb{S}^1) \# \mathbb{CP}^2 \# \stackrel{(h)}{\mathbb{H}_{\partial_p}}^4 & \text{if } \partial M^4 \neq \emptyset \end{cases}$$

• No M^4 exists with $\partial M^4 = \emptyset$, $\mathcal{G}(M^4) - rk(M^4) = 3$ and $\pi_1(M^4) = *_m \mathbb{Z}$.

Every closed PL 4-manifold M^4 admits a handle-decomposition

$$M^{4} = H^{(0)} \cup (H_{1}^{(1)} \cup \cdots \cup H_{r_{1}}^{(1)}) \cup (H_{1}^{(2)} \cup \cdots \cup H_{r_{2}}^{(2)}) \cup (H_{1}^{(3)} \cup \cdots \cup H_{r_{3}}^{(3)}) \cup H^{(4)}$$

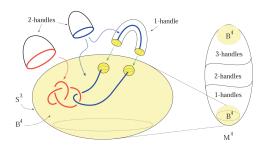
where $H^{(0)} = \mathbb{D}^4$ and each p-handle $H_i^{(p)} = \mathbb{D}^p \times \mathbb{D}^{4-p}$ $(1 \le p \le 4)$ is endowed with an an embedding (called *attaching map*)

$$f_i^{(p)}:\partial\mathbb{D}^p\times\mathbb{D}^{4-p}\to\partial(H^{(0)}\cup\ldots(H_1^{(p-1)}\cup\cdots\cup H_{r_{p-1}}^{(p-1)})).$$

Every closed PL 4-manifold M^4 admits a handle-decomposition

$$M^{4} = H^{(0)} \cup (H_{1}^{(1)} \cup \dots \cup H_{r_{1}}^{(1)}) \cup (H_{1}^{(2)} \cup \dots \cup H_{r_{2}}^{(2)}) \cup (H_{1}^{(3)} \cup \dots \cup H_{r_{3}}^{(3)}) \cup H^{(4)}$$

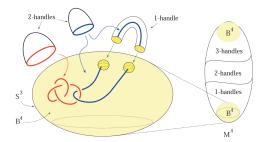
where $H^{(0)} = \mathbb{D}^4$ and each p-handle $H_i^{(p)} = \mathbb{D}^p \times \mathbb{D}^{4-p}$ $(1 \le p \le 4)$ is endowed with an an embedding (called *attaching map*) $f_i^{(p)} : \partial \mathbb{D}^p \times \mathbb{D}^{4-p} \to \partial (H^{(0)} \cup \dots (H_1^{(p-1)} \cup \dots \cup H_{r-1}^{(p-1)}))$.



Every closed PL 4-manifold M^4 admits a handle-decomposition

$$M^{4} = H^{(0)} \cup (H_{1}^{(1)} \cup \dots \cup H_{r_{1}}^{(1)}) \cup (H_{1}^{(2)} \cup \dots \cup H_{r_{2}}^{(2)}) \cup (H_{1}^{(3)} \cup \dots \cup H_{r_{3}}^{(3)}) \cup H^{(4)}$$

where $H^{(0)} = \mathbb{D}^4$ and each p-handle $H_i^{(p)} = \mathbb{D}^p \times \mathbb{D}^{4-p}$ $(1 \le p \le 4)$ is endowed with an an embedding (called *attaching map*) $f_i^{(p)} : \partial \mathbb{D}^p \times \mathbb{D}^{4-p} \to \partial (H^{(0)} \cup \dots (H_1^{(p-1)} \cup \dots \cup H_r^{(p-1)}))$.



3- and 4-handles are uniquely attached to the union of 0, 1, 2-handles.

If (Γ, γ) is a *crystallization* of a closed M^4 and $\{\{r, s, t\}, \{i, j\}\}$ is a partition of the five vertices of the associated pseudocomplex $K(\Gamma)$, then M^4 admits a decomposition of type

$$M^4 = N(r, s, t) \cup_{\phi} N(i, j)$$

where:

- N(r, s, t) denotes a regular neighborhood of the subcomplex of $K(\Gamma)$ generated by vertices labelled by $\{r, s, t\}$ (union of 0,1,2-handles)
- N(i,j) denotes a regular neighborhood of the subcomplex of $K(\Gamma)$ generated by vertices labelled by $\{i,j\}$ (union of 3,4-handles)
- ullet ϕ is a boundary identification.

The hypotheses assumed about regular genus in many of the previous statements imply the associated handle-decomposition to *lack in* 2-handles; this fact allows to recognize the manifold M^4 as a connected sum of copies of $\mathbb{S}^3 \times \mathbb{S}^1$ and/or handlebodies.

The hypotheses assumed about regular genus in many of the previous statements imply the associated handle-decomposition to *lack in* 2-handles; this fact allows to recognize the manifold M^4 as a connected sum of copies of $\mathbb{S}^3 \times \mathbb{S}^1$ and/or handlebodies.

On the other hand, when at least a 2-handle appears, it is not possible to identify the represented 4-manifold, because of the great "freedom" in attaching 2-handles in dimension 4: the attaching map for a 2-handle in dimension 4 depends on a framed knot (K,c), with $c \in \mathbb{Z}$.

The hypotheses assumed about regular genus in many of the previous statements imply the associated handle-decomposition to *lack in* 2-handles; this fact allows to recognize the manifold M^4 as a connected sum of copies of $\mathbb{S}^3 \times \mathbb{S}^1$ and/or handlebodies.

On the other hand, when at least a 2-handle appears, it is not possible to identify the represented 4-manifold, because of the great "freedom" in attaching 2-handles in dimension 4: the attaching map for a 2-handle in dimension 4 depends on a framed knot (K,c), with $c \in \mathbb{Z}$.

However, if the union of 0,1,2-handles is known to have spherical boundary, then the attachment of a unique 2-handle is proved to give rise to a \mathbb{CP}^2 component, via an important result of Gordon-Luecke.

Note that exactly the above "freedom" concerning 2-handles yields to prove that in dimension n=4 the classification of PL-manifolds is *not finite-to-one* with respect to regular genus.

Note that exactly the above "freedom" concerning 2-handles yields to prove that in dimension n=4 the classification of PL-manifolds is *not finite-to-one* with respect to regular genus.

In fact, if $\mathbb{S}^2 \times \mathbb{D}^2$ denotes the trivial \mathbb{D}^2 -bundle over \mathbb{S}^2 and ξ_c , for every $c \in \mathbb{Z} - \{0, +1, -1\}$, denotes the non-trivial one with Euler class c and boundary L(c, 1), then:

[Casali, 1996]

$$\mathcal{G}(\mathbb{S}^2 \times \mathbb{D}^2) = \mathcal{G}(\xi_c) = 3, \ \forall c \in \mathbb{Z} - \{0, +1, -1\}.$$

Note that exactly the above "freedom" concerning 2-handles yields to prove that in dimension n=4 the classification of PL-manifolds is *not finite-to-one* with respect to regular genus.

In fact, if $\mathbb{S}^2 \times \mathbb{D}^2$ denotes the trivial \mathbb{D}^2 -bundle over \mathbb{S}^2 and ξ_c , for every $c \in \mathbb{Z} - \{0, +1, -1\}$, denotes the non-trivial one with Euler class c and boundary L(c, 1), then:

[Casali, 1996]

$$\mathcal{G}(\mathbb{S}^2 \times \mathbb{D}^2) = \mathcal{G}(\xi_c) = 3, \ \forall c \in \mathbb{Z} - \{0, +1, -1\}.$$

It is an open question whether the number of PL 4-manifolds with fixed (possibly empty) boundary and fixed regular genus is finite or not.

Definition ([Basak - Spreer, 2014]):

A crystallization (Γ, γ) of a closed PL 4-manifold M^4 is *simple* if $g_{ijk} = 1 \ \forall i, j, k \in \Delta_4$.

Equivalently: if any pair of vertices of $K(\Gamma)$ belongs to a unique 1-simplex (i.e. the 1-skeleton of $K(\Gamma)$ coincides with the 1-skeleton of a single 4-simplex).

Definition ([Basak - Spreer, 2014]):

A crystallization (Γ, γ) of a closed PL 4-manifold M^4 is *simple* if $g_{ijk} = 1 \ \forall i, j, k \in \Delta_4$.

Equivalently: if any pair of vertices of $K(\Gamma)$ belongs to a unique 1-simplex (i.e. the 1-skeleton of $K(\Gamma)$ coincides with the 1-skeleton of a single 4-simplex).

As a consequence: M^4 is simply-connected.

Definition ([Basak - Spreer, 2014]):

A crystallization (Γ, γ) of a closed PL 4-manifold M^4 is *simple* if $g_{ijk} = 1 \ \forall i, j, k \in \Delta_4$.

Equivalently: if any pair of vertices of $K(\Gamma)$ belongs to a unique 1-simplex (i.e. the 1-skeleton of $K(\Gamma)$ coincides with the 1-skeleton of a single 4-simplex).

As a consequence: M^4 is simply-connected.

Definition ([Basak - Casali, 2015]):

A crystallization (Γ, γ) of a closed PL 4-manifold M^4 is *semi-simple* if $g_{ijk} = m+1 \ \forall i,j,k \in \Delta_4$, where $m = rk(M^4)$.

Equivalently: any pair of vertices of $K(\Gamma)$ belongs to exactly m+1 1-simplices.

Characterization of manifolds admitting simple and semi-simple crystallizations

Simple and semi-simple crystallizations are proved to be "minimal" both with respect to gem-complexity and regular genus.

Characterization of manifolds admitting simple and semi-simple crystallizations

Simple and semi-simple crystallizations are proved to be "minimal" both with respect to gem-complexity and regular genus.

[Casali - Cristofori - Gagliardi, 2015]

A closed simply-connected PL 4-manifold M^4 admits simple crystallizations if and only if $k(M^4) = 3\beta_2(M^4)$.

If M admits simple crystallizations, then $\mathcal{G}(M^4) = 2\beta_2(M^4)$.

Characterization of manifolds admitting simple and semi-simple crystallizations

Simple and semi-simple crystallizations are proved to be "minimal" both with respect to gem-complexity and regular genus.

[Casali - Cristofori - Gagliardi, 2015]

A closed simply-connected PL 4-manifold M^4 admits simple crystallizations if and only if $k(M^4) = 3\beta_2(M^4)$.

If M admits simple crystallizations, then $G(M^4) = 2\beta_2(M^4)$.

[Basak - Casali, 2015]

A closed PL 4-manifold M^4 with $rk(M^4)=m$ admits semi-simple crystallizations if and only if $k(M^4)=3\chi(M^4)+10m-6$.

If M^4 admits semi-simple crystallizations, then

$$G(M^4) = 2\chi(M^4) + 5m - 4.$$

Manifolds admitting simple and semi-simple crystallizations

MANIFOLDS ADMITTING SIMPLE CRYSTALLIZATIONS:

 \mathbb{CP}^2 , $\mathbb{S}^2 \times \mathbb{S}^2$, K3 and their connected sums

Manifolds admitting simple and semi-simple crystallizations

MANIFOLDS ADMITTING SIMPLE CRYSTALLIZATIONS:

 \mathbb{CP}^2 , $\mathbb{S}^2 \times \mathbb{S}^2$, K3 and their connected sums

MANIFOLDS ADMITTING SEMI-SIMPLE CRYSTALLIZATIONS:

$$\mathbb{S}^3 \times \mathbb{S}^1$$
, $\mathbb{S}^3 \widetilde{\times} \mathbb{S}^1$, \mathbb{RP}^4 and their connected sums

Manifolds admitting simple and semi-simple crystallizations

MANIFOLDS ADMITTING SIMPLE CRYSTALLIZATIONS:

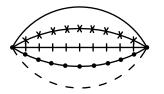
 \mathbb{CP}^2 , $\mathbb{S}^2 \times \mathbb{S}^2$, K3 and their connected sums

MANIFOLDS ADMITTING SEMI-SIMPLE CRYSTALLIZATIONS:

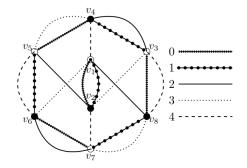
 $\mathbb{S}^3 \times \mathbb{S}^1$, $\mathbb{S}^3 \widetilde{\times} \mathbb{S}^1$, \mathbb{RP}^4 and their connected sums

[Basak - Spreer, 2014] [Basak - Casali, 2015]

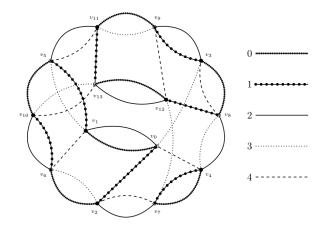
Let M^4 and $M^{4\prime}$ be two PL 4-manifolds admitting simple (resp. semi-simple) crystallizations. Then, $M^4\#M^{4\prime}$ admits simple (resp. semi-simple) crystallizations, too.



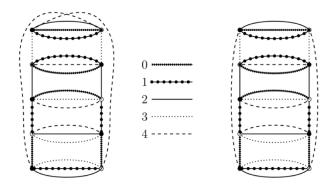
A simple crystallization of \mathbb{S}^4



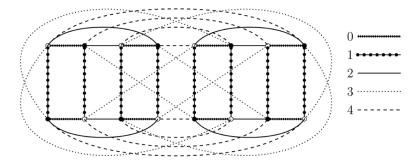
A simple crystallization of \mathbb{CP}^2



A simple crystallization of $\mathbb{S}^2\times\mathbb{S}^2$



Semi-simple crystallizations of $\mathbb{S}^3\times\mathbb{S}^1$ and $\mathbb{S}^3\widetilde{\times}\mathbb{S}^1$



A semi-simple crystallization of \mathbb{RP}^4

Simple and semi-simple crystallizations: additivity property

Simple and semi-simple crystallizations: additivity property

[Casali - Cristofori - Gagliardi, 2015] [Basak-Casali, 2015]

Let M^4 and $M^{4\prime}$ be PL 4-manifolds admitting simple or semi-simple crystallizations. Then:

$$\mathcal{G}(M^4 \# M^{4\prime}) = \mathcal{G}(M^4) + \mathcal{G}(M^{4\prime})$$
 and $k(M^4 \# M^{4\prime}) = k(M^4) + k(M^{4\prime})$.

Simple and semi-simple crystallizations: additivity property

[Casali - Cristofori - Gagliardi, 2015] [Basak-Casali, 2015]

Let M^4 and $M^{4\prime}$ be PL 4-manifolds admitting simple or semi-simple crystallizations. Then:

$$\mathcal{G}(M^4 \# M^{4\prime}) = \mathcal{G}(M^4) + \mathcal{G}(M^{4\prime})$$
 and $k(M^4 \# M^{4\prime}) = k(M^4) + k(M^{4\prime})$.

Consequence:

Let $M^4 \cong_{PL} (\#_p \mathbb{CP}^2) \# (\#_{p'} (-\mathbb{CP}^2)) \# (\#_q (\mathbb{S}^2 \times \mathbb{S}^2)) \# (\#_r (\mathbb{S}^3 \times \mathbb{S}^1)) \# (\#_r (\mathbb{S}^3 \times \mathbb{S}^1)) \# (\#_s \mathbb{RP}^4) \# (\#_t K3), \text{ with } p, p', q, r, s, t \geq 0.$ Then,

$$k(M) = 3(p + p' + 2q + 22t) + 4(r + r') + 7s$$

$$G(M) = 2(p + p' + 2q + 22t) + r + r' + 3s.$$

In particular: k(K3) = 66 and G(K3) = 44.

[Casali - Cristofori - Gagliardi, 2015]

Let (Γ, γ) be a simple crystallization of a PL 4-manifold M^4 . Then, for any partition $\{\{i, j, k\}, \{r, s\}\}$ of Δ_4 , the coloured triangulation $K(\Gamma)$ of M^4 induces a handle decomposition of M^4 consisting of one 0-handle, $\beta_2(M^4) = g_{rs} - 1$ 2-handles and one 4-handle.

[Casali - Cristofori - Gagliardi, 2015]

Let (Γ, γ) be a simple crystallization of a PL 4-manifold M^4 . Then, for any partition $\{\{i, j, k\}, \{r, s\}\}$ of Δ_4 , the coloured triangulation $K(\Gamma)$ of M^4 induces a handle decomposition of M^4 consisting of one 0-handle, $\beta_2(M^4) = g_{rs} - 1$ 2-handles and one 4-handle.

- K(r,s) consists of exactly one 1-simplex (hence: $N(r,s)=\mathbb{D}^4$)
- K(i,j,k) consists of g_{rs} 2-simplices, all having the same boundary (hence: $N(i,j,k) = \mathbb{D}^4 \cup (H_1^{(2)} \cup \cdots \cup H_{g_{rs}-1}^{(2)})$)

[Casali - Cristofori - Gagliardi, 2015]

Let (Γ, γ) be a simple crystallization of a PL 4-manifold M^4 . Then, for any partition $\{\{i, j, k\}, \{r, s\}\}$ of Δ_4 , the coloured triangulation $K(\Gamma)$ of M^4 induces a handle decomposition of M^4 consisting of one 0-handle, $\beta_2(M^4) = g_{rs} - 1$ 2-handles and one 4-handle.

- K(r,s) consists of exactly one 1-simplex (hence: $N(r,s)=\mathbb{D}^4$)
- K(i,j,k) consists of g_{rs} 2-simplices, all having the same boundary (hence: $N(i,j,k) = \mathbb{D}^4 \cup (H_1^{(2)} \cup \cdots \cup H_{g_{rs}-1}^{(2)})$)

Kirby Problem n. 50: Does any closed simply-connected 4-manifold admit a handlebody decomposition without 1- and 3-handles?

Exotic structures and simple crystallizations

[Casali - Cristofori, 2015]

Let M^4 and $M^{4\prime}$ be two closed PL 4-manifolds, with $M^4 \cong_{TOP} M^{4\prime}$. If both M^4 and $M^{4\prime}$ admit simple crystallizations, then $k(M^4) = k(M^{4\prime})$.

Exotic structures and simple crystallizations

[Casali - Cristofori, 2015]

Let M^4 and $M^{4\prime}$ be two closed PL 4-manifolds, with $M^4 \cong_{TOP} M^{4\prime}$. If both M^4 and $M^{4\prime}$ admit simple crystallizations, then $k(M^4) = k(M^{4\prime})$.

Consequences:

- Let M^4 be \mathbb{S}^4 or \mathbb{CP}^2 or $\mathbb{S}^2 \times \mathbb{S}^2$ or $\mathbb{CP}^2 \# \mathbb{CP}^2$ or $\mathbb{CP}^2 \# (-\mathbb{CP}^2)$; if an exotic PL-structure on M^4 exists, then the corresponding PL-manifold does not admit simple crystallizations.
- If $r \in \{3, 5, 7, 9, 11, 13\} \cup \{r = 4n 1/n \ge 4\} \cup \{r = 4n 2/n \ge 23\}$, then infinitely many simply-connected PL 4-manifolds with $\beta_2 = r$ do not admit simple crystallizations.
- Let \bar{M} be a PL 4-manifold TOP-homeomorphic but not PL-homeomorphic to $\mathbb{CP}^2\#_2(-\mathbb{CP}^2)$; then, either \bar{M} does not admit simple crystallizations or \bar{M} admits an order 20 simple crystallization.

Definitions and characterization Examples Properties Relations with exotic structures

Exotic structures and simple crystallizations

An answer to this open question could arise from the 4-dimensional catalogue of order 20 crystallizations, whose analysis is currently underway!

Exotic structures and simple crystallizations

An answer to this open question could arise from the 4-dimensional catalogue of order 20 crystallizations, whose analysis is currently underway!

Note that, in case of positive answer, we would have the first example of a simple crystallization of an exotic PL 4-manifold.