REPRESENTING AND CLASSIFYING COMPACT PL 4-MANIFOLDS VIA REGULAR 5-COLORED GRAPHS

Maria Rita Casali

University of Modena and Reggio Emilia (Italy) casali@unimore.it

Joint Meeting UMI-SIMAI-PTM Wroclaw (Poland), 17-20/09/2018

special session "Geometric Topology, Manifolds, and Group Actions"

(d+1)-colored graphs

(d+1)-colored graphs

Definition

A (d+1)-colored graph is (Γ, γ) where:

- $\Gamma = (V(\Gamma), E(\Gamma))$ regular multigraph of degree d+1,
- $\gamma: E(\Gamma) \to \Delta_d = \{0, \dots, d\}$ such that $\gamma(e) \neq \gamma(f)$ for each pair of adjacent edges $e, f \in E(\Gamma)$ (edge-coloration)

(d+1)-colored graphs

Definition

A (d+1)-colored graph is (Γ, γ) where:

- $\Gamma = (V(\Gamma), E(\Gamma))$ regular multigraph of degree d+1,
- $\gamma: E(\Gamma) \to \Delta_d = \{0, \dots, d\}$ such that $\gamma(e) \neq \gamma(f)$ for each pair of adjacent edges $e, f \in E(\Gamma)$ (edge-coloration)

From any $(\Gamma, \gamma) \longrightarrow \text{colored pseudocomplex } K(\Gamma)$

- 1) take a *d*-simplex $\sigma(x)$ for every vertex $x \in V(\Gamma)$, and label its vertices by Δ_d ;
- 2) if $x, y \in V(\Gamma)$ are joined by a c-colored edge, identify the (d-1)-faces of $\sigma(x)$ and $\sigma(y)$ opposite to c-labelled vertices, so that equally labelled vertices coincide.

- 1) take a *d*-simplex $\sigma(x)$ for every vertex $x \in V(\Gamma)$, and label its vertices by Δ_d ;
- 2) if $x, y \in V(\Gamma)$ are joined by a c-colored edge, identify the (d-1)-faces of $\sigma(x)$ and $\sigma(y)$ opposite to c-labelled vertices, so that equally labelled vertices coincide.

- \star $K(\Gamma)$ is a d-pseudomanifold
- * (Γ, γ) represents $|K(\Gamma)|$
- \star Γ is the 1-skeleton of the dual complex of $K(\Gamma)$

PROPERTIES:

PROPERTIES:

• $|K(\Gamma)|$ is orientable iff Γ is bipartite;

PROPERTIES:

- $|K(\Gamma)|$ is orientable iff Γ is bipartite;
- $\forall \mathcal{B} \subset \Delta_d$, with $\#\mathcal{B} = h$, there is a bijection between (d-h)-simplices of $K(\Gamma)$ whose vertices are labelled by $\Delta_d \{\mathcal{B}\}$ and connected components of h-colored graph $\Gamma_{\mathcal{B}} = (V(\Gamma), \gamma^{-1}(\mathcal{B}))$.

PROPERTIES:

- $|K(\Gamma)|$ is orientable iff Γ is bipartite;
- $\forall \mathcal{B} \subset \Delta_d$, with $\#\mathcal{B} = h$, there is a bijection between (d-h)-simplices of $K(\Gamma)$ whose vertices are labelled by $\Delta_d \{\mathcal{B}\}$ and connected components of h-colored graph $\Gamma_{\mathcal{B}} = (V(\Gamma), \gamma^{-1}(\mathcal{B}))$.

In particular:

• for each $c \in \Delta_d$, the c-labelled vertices of $K(\Gamma)$ are in bijection with the connected components of $\Gamma_{\hat{c}} = \Gamma_{\Delta_d - \{c\}}$ (representing $lk(v_c)$ in $K'(\Gamma)$).

PROPERTIES:

- $|K(\Gamma)|$ is orientable iff Γ is bipartite;
- $\forall \mathcal{B} \subset \Delta_d$, with $\#\mathcal{B} = h$, there is a bijection between (d-h)-simplices of $K(\Gamma)$ whose vertices are labelled by $\Delta_d \{\mathcal{B}\}$ and connected components of h-colored graph $\Gamma_{\mathcal{B}} = (V(\Gamma), \gamma^{-1}(\mathcal{B}))$.

In particular:

• for each $c \in \Delta_d$, the c-labelled vertices of $K(\Gamma)$ are in bijection with the connected components of $\Gamma_{\hat{c}} = \Gamma_{\Delta_d - \{c\}}$ (representing $lk(v_c)$ in $K'(\Gamma)$).

As a consequence:

 $|K(\Gamma)|$ is a closed PL d-manifold if and only if, for every $c \in \Delta_d$, each connected component of $\Gamma_{\hat{c}}$ represents \mathbb{S}^{d-1} .

Definition

A $singular\ d$ -manifold is a compact connected d-dimensional polyhedron |K| so that:

- for any vertex v, lk(v) is a closed connected (d-1)-manifold;
- for any h-simplex σ , h > 0, $lk(\sigma) \cong \mathbb{S}^{d-h-1}$.

A vertex whose link is not a PL (d-1)-sphere is called *singular*.

Definition

A $singular\ d$ -manifold is a compact connected d-dimensional polyhedron |K| so that:

- for any vertex v, lk(v) is a closed connected (d-1)-manifold;
- for any h-simplex σ , h > 0, $lk(\sigma) \cong \mathbb{S}^{d-h-1}$.

A vertex whose link is not a PL (d-1)-sphere is called *singular*.

Note that singular *d*-manifolds include closed PL *d*-manifolds.

N singular d-manifold \Longrightarrow \mathring{N} compact PL d-manifold (by deleting small open neighbourhoods of singular vertices of N)

```
N singular d-manifold \Longrightarrow \mathring{N} compact PL d-manifold (by deleting small open neighbourhoods of singular vertices of N)
```

```
M compact PL d-manifold \Longrightarrow \widehat{M} singular d-manifold (by capping off each component of \partial M by a cone)
```

N singular d-manifold \Longrightarrow \mathring{N} compact PL d-manifold (by deleting small open neighbourhoods of singular vertices of N)

M compact PL d-manifold \Longrightarrow \widehat{M} singular d-manifold (by capping off each component of ∂M by a cone)

Singular d-manifolds are in bijection with compact PL d-manifolds with no spherical boundary components.

```
If \Gamma is a regular (d+1)-colored graph:
```

 $|K(\Gamma)|$ is a singular *d*-manifold if and only if, for every $c \in \Delta_d$, each connected component of $\Gamma_{\hat{c}}$ represents a closed (d-1)-manifold.

If Γ is a regular (d+1)-colored graph:

 $|K(\Gamma)|$ is a singular *d*-manifold if and only if, for every $c \in \Delta_d$, each connected component of $\Gamma_{\hat{c}}$ represents a closed (d-1)-manifold.

Existence theorem [Pezzana, 1974] [Casali-Cristofori-Grasselli, 2018]

Each singular d-manifold admits a regular (d+1)-colored graph representing it.

EXAMPLES: handlebodies

the orientable genus one 4-dimensional handlebody $~\mathbb{Y}_1^4 = \mathbb{S}^1 \times \mathbb{D}^3$

EXAMPLES: handlebodies

without color 1: \mathbb{S}^3

EXAMPLES: handlebodies

CONSTRUCTIONS: (a) products $M \times I$

CONSTRUCTIONS: (a) products $M \times I$

L(2,1)

CONSTRUCTIONS: (a) products $M \times I$

Let (L, c) be a framed link. If L has I components L_1, \ldots, L_I and $c = (c_1, \ldots, c_I)$,

$$M^4(L,c) = \mathbb{D}^4 \cup (H_1^{(2)} \cup \cdots \cup H_I^{(2)})$$

where, $\forall i = 1, \dots, I$,

$$H_i^{(2)} = \mathbb{D}^2 \times \mathbb{D}^2$$

has attaching map

$$\phi_i:\partial\mathbb{D}^2\times\mathbb{D}^2\to\partial\mathbb{D}^4$$

such that $\phi_i(\mathbb{S}^1 \times \{0\}) = L_i$ has linking number c_i with $\phi_i(\mathbb{S}^1 \times \{x\})$, $\forall x \in \mathbb{D}^2 - \{0\}$.

 $\partial M^4(L,c) = M^3(L,c)$, obtained by Dehn surgery on (L,c).

framed knot (T,1)

 $M^3(T,1)$, obtained by Dehn surgery on (T,1), i.e. the Heegaard genus two Poincaré homology sphere

main step toward $M^4(L,c)$

main step toward $M^4(T,1)$, the 4-manifold with boundary associated to (T,1) (with boundary $M^3(T,1)$)

CONSTRUCTIONS: (b) 4-manifolds $M^4(L,c)$

 $M^4(T,1)$, the 4-manifold with boundary associated to (T,1) (with boundary $M^3(T,1)$)

EXAMPLES: \mathbb{D}^2 -bundles over \mathbb{S}^2

EXAMPLES: \mathbb{D}^2 -bundles over \mathbb{S}^2

$$M^4(K_0,0)=\mathbb{S}^2 imes\mathbb{D}^2$$
 (with boundary $M^3(K_0,0)=\mathbb{S}^2 imes\mathbb{S}^1)$

EXAMPLES: \mathbb{D}^2 -bundles over \mathbb{S}^2

 $M^4(K_0,2)=\xi_2$, the \mathbb{D}^2 -bundle over \mathbb{S}^2 with Euler class 2 (with boundary $M^3(K_0,2)=L(2,1)$)

Regular embeddings

A cellular embedding $i: |\Gamma| \to F$ of a (d+1)-colored graph (Γ, γ) into a (closed) surface F is called a regular embedding if there exists a cyclic permutation $\varepsilon = (\varepsilon_0, \dots, \varepsilon_d)$ of Δ_d s.t. each connected component of $F - i(|\Gamma|)$ is an open ball bounded by the image of an $\{\varepsilon_i, \varepsilon_{i+1}\}$ — colored cycle of Γ .

Regular embeddings

A cellular embedding $i: |\Gamma| \to F$ of a (d+1)-colored graph (Γ, γ) into a (closed) surface F is called a regular embedding if there exists a cyclic permutation $\varepsilon = (\varepsilon_0, \ldots, \varepsilon_d)$ of Δ_d s.t. each connected component of $F - i(|\Gamma|)$ is an open ball bounded by the image of an $\{\varepsilon_i, \varepsilon_{i+1}\}$ — colored cycle of Γ .

EXAMPLE: Regular embedding corresponding to $\varepsilon =$ (green, red, blue, grey)

Theorem [Gagliardi, 1981]

For each (d+1)-colored graph (Γ, γ) and for every cyclic permutation ε of Δ_d , there exists a *regular embedding* of Γ onto a suitable surface F_{ε} . Moreover:

- F_{ε} is orientable if and only if Γ is bipartite;
- ε and ε^{-1} induce the same embedding.

Theorem [Gagliardi, 1981]

For each (d+1)-colored graph (Γ, γ) and for every cyclic permutation ε of Δ_d , there exists a *regular embedding* of Γ onto a suitable surface F_{ε} . Moreover:

- F_{ε} is orientable if and only if Γ is bipartite;
- ε and ε^{-1} induce the same embedding.

Definition

The *regular genus* $\rho_{\epsilon}(\Gamma)$ of Γ with respect to ε is the classical genus (resp. half of the genus) of the orientable (resp. non-orientable) surface F_{ε} :

$$\sum_{i\in\mathbb{Z}_{d+1}}g_{\varepsilon_{i}\varepsilon_{i+1}}+(1-d)p=2-2\rho_{\varepsilon}(\Gamma)$$

where $g_{\epsilon_i,\epsilon_{i+1}} = \text{number of } \{\epsilon_i,\epsilon_{i+1}\}\text{-cycles}, \ 2p = \#V(\Gamma).$

Definition

• regular genus of Γ:

$$\rho(\Gamma) = \min \{ \rho_{\varepsilon}(\Gamma) / \varepsilon \text{ cyclic permutation of } \Delta_d \}$$

Definition

regular genus of Γ:

$$\rho(\Gamma) = \min \left\{ \rho_{\varepsilon}(\Gamma) / \varepsilon \text{ cyclic permutation of } \Delta_d \right\}$$

• regular genus of a closed PL d-manifold M^d:

$$\mathcal{G}(M^d) = \min \left\{ \rho(\Gamma) / (\Gamma, \gamma) \text{ represents } M^d \right\}$$

Definition

• regular genus of Γ:

$$\rho(\Gamma) = \min \left\{ \rho_{\varepsilon}(\Gamma) / \varepsilon \text{ cyclic permutation of } \Delta_d \right\}$$

• regular genus of a closed PL d-manifold M^d:

$$\mathcal{G}(M^d) = \min \left\{ \rho(\Gamma) / (\Gamma, \gamma) \text{ represents } M^d \right\}$$

The regular genus is a PL-manifold invariant which extends to arbitrary dimension the classical genus of a surface and the Heegaard genus of a 3-manifold.

Definition

The generalized regular genus of a singular d-manifold N is defined as

$$\overline{\mathcal{G}}(\textit{N}) = \min\{\rho_{\epsilon}(\Gamma) \mid (\Gamma, \gamma) \text{ represents } \textit{N}, \ \ \epsilon \text{ cyclic permutation of } \Delta_d\}.$$

$$\overline{\mathcal{G}}(\check{N}) = \overline{\mathcal{G}}(N).$$

General properties

• For any (d+1)-colored graph,

$$\bar{\mathcal{G}}(K(\Gamma)) = 0 \iff |K(\Gamma)| \cong \mathbb{S}^d;$$

General properties

• For any (d+1)-colored graph,

$$\bar{\mathcal{G}}(K(\Gamma)) = 0 \iff |K(\Gamma)| \cong \mathbb{S}^d;$$

• for any singular d-manifold N with at most d-1 singular vertices,

$$\bar{\mathcal{G}}(N) \geq rk(\pi_1(\check{N}));$$

General properties

• For any (d+1)-colored graph,

$$\bar{\mathcal{G}}(K(\Gamma)) = 0 \iff |K(\Gamma)| \cong \mathbb{S}^d;$$

ullet for any singular d-manifold N with at most d-1 singular vertices,

$$\bar{\mathcal{G}}(N) \geq rk(\pi_1(\check{N}));$$

• for any singular d-manifold N with one singular vertex,

$$\bar{\mathcal{G}}(N) \geq \mathcal{G}(\partial \check{N}).$$

Theorem [Gagliardi, 1989] [Cavicchioli, 1989]

Let M^4 be a closed PL 4-manifold. Then,

$$\mathcal{G}(\textit{M}^{4}) = 1 \iff \textit{M}^{4} \in \{\mathbb{S}^{1} \times \mathbb{S}^{3}, \; \mathbb{S}^{1} \tilde{\times} \mathbb{S}^{3}\}$$

Theorem [Gagliardi, 1989] [Cavicchioli, 1989]

Let M^4 be a closed PL 4-manifold. Then,

$$\mathcal{G}(M^4) = 1 \iff M^4 \in \{\mathbb{S}^1 \times \mathbb{S}^3, \ \mathbb{S}^1 \tilde{\times} \mathbb{S}^3\}$$

Theorem [Casali, preprint 2018]

Let N^4 be a singular 4-manifold with $\,\bar{\mathcal{G}}(\mathit{N}^4)=1.\,$ Then,

$$\text{either} \ \ \textit{N}^{4} \in \{\mathbb{S}^{1} \times \mathbb{S}^{3}, \ \mathbb{S}^{1} \tilde{\times} \mathbb{S}^{3}\} \quad \text{or} \quad \check{\textit{N}}^{4} \in \{\mathbb{Y}^{4}_{1}, \tilde{\mathbb{Y}}^{4}_{1}\} \quad \text{or} \quad \check{\textit{N}}^{4} \cong \bar{\textit{M}} \times \textit{I},$$

where \bar{M} is a genus one closed 3-manifold.

Theorem [Cavicchioli, 1992]

Let M^4 be a closed PL 4-manifold. Then,

$$\mathcal{G}(M^4) = 2 \iff M^4 \in \{\#_2(\mathbb{S}^1 \times \mathbb{S}^3), \ \#_2(\mathbb{S}^1 \tilde{\times} \mathbb{S}^3), \ \mathbb{CP}^2\}$$

Theorem [Cavicchioli, 1992]

Let M^4 be a closed PL 4-manifold. Then,

$$\mathcal{G}(M^4) = 2 \iff M^4 \in \{\#_2(\mathbb{S}^1 \times \mathbb{S}^3), \ \#_2(\mathbb{S}^1 \tilde{\times} \mathbb{S}^3), \ \mathbb{CP}^2\}$$

Theorem [Casali, preprint 2018]

Let N^4 be a singular 4-manifold with one singular vertex at most and with $\bar{\mathcal{G}}(N^4)=2$. Then:

either
$$N^4 \in \{\#_2(\mathbb{S}^1 \times \mathbb{S}^3), \ \#_2(\mathbb{S}^1 \tilde{\times} \mathbb{S}^3), \ \mathbb{CP}^2\},$$

$$\text{or}\quad \check{N}^4 \in \{\mathbb{Y}_2^4,\ \tilde{\mathbb{Y}}_2^4,\ \mathbb{Y}_1^4\#(\mathbb{S}^1\times\mathbb{S}^3),\ \tilde{\mathbb{Y}}_1^4\#(\mathbb{S}^1\times\mathbb{S}^3),\ \mathbb{S}^2\times\mathbb{D}^2,\ \xi_2\},$$

or $\check{N}^4 \cong M^4(K,d)$, (K,d) framed knot s.t. $M^3(K,d) = L(\alpha,\beta)$, $\alpha \geq 3$.

Theorem [Casali, preprint 2018]

Let $\xi_c = M^4(K_0, c)$ be the \mathbb{D}^2 -bundle over \mathbb{S}^2 with Euler class c, $\forall c \in \mathbb{Z}^+ - \{1\}$ (whose boundary is $M^3(K_0, c) \cong L(c, 1)$).

Theorem [Casali, preprint 2018]

Let $\xi_c = M^4(K_0, c)$ be the \mathbb{D}^2 -bundle over \mathbb{S}^2 with Euler class c, $\forall c \in \mathbb{Z}^+ - \{1\}$ (whose boundary is $M^3(K_0, c) \cong L(c, 1)$). Then,

$$\bar{\mathcal{G}}(\xi_c) = \bar{\mathcal{G}}(\mathbb{S}^2 \times \mathbb{D}^2) = 2.$$

Theorem [Casali, preprint 2018]

Let $\xi_c = M^4(K_0, c)$ be the \mathbb{D}^2 -bundle over \mathbb{S}^2 with Euler class c, $\forall c \in \mathbb{Z}^+ - \{1\}$ (whose boundary is $M^3(K_0, c) \cong L(c, 1)$). Then,

$$\bar{\mathcal{G}}(\xi_c) = \bar{\mathcal{G}}(\mathbb{S}^2 \times \mathbb{D}^2) = 2.$$

Generalized regular genus is NOT finite-to-one within the class of compact manifolds.

Theorem [Casali, preprint 2018]

Let $\xi_c = M^4(K_0, c)$ be the \mathbb{D}^2 -bundle over \mathbb{S}^2 with Euler class c, $\forall c \in \mathbb{Z}^+ - \{1\}$ (whose boundary is $M^3(K_0, c) \cong L(c, 1)$). Then,

$$\bar{\mathcal{G}}(\xi_c) = \bar{\mathcal{G}}(\mathbb{S}^2 \times \mathbb{D}^2) = 2.$$

Generalized regular genus is NOT finite-to-one within the class of compact manifolds.

OPEN QUESTION:

is the number of PL 4-manifolds with fixed (possibly empty) boundary and fixed generalized regular genus finite or not?

Theorem [Casali, preprint 2018]

Let $\xi_c = M^4(K_0, c)$ be the \mathbb{D}^2 -bundle over \mathbb{S}^2 with Euler class c, $\forall c \in \mathbb{Z}^+ - \{1\}$ (whose boundary is $M^3(K_0, c) \cong L(c, 1)$). Then,

$$\bar{\mathcal{G}}(\xi_c) = \bar{\mathcal{G}}(\mathbb{S}^2 \times \mathbb{D}^2) = 2.$$

OPEN QUESTION:

Does a framed knot (K, d) exist, with non-trivial K, so that $\bar{\mathcal{G}}(M^4(K, d)) = 2$ (and $M^3(K, d) = L(\alpha, \beta)$, with $\alpha \geq 3$)?

Theorem [Casali, preprint 2018]

Let N^4 be a singular 4-manifold with exactly one singular vertex. Then:

$$\bar{\mathcal{G}}(\textit{N}^{4}) = \mathcal{G}(\partial \check{\textit{N}}^{4}) = \textit{m} \geq 1 \quad \Longleftrightarrow \quad \check{\textit{N}}^{4} \in \{\mathbb{Y}^{4}_{\textit{m}}, \tilde{\mathbb{Y}}^{4}_{\textit{m}}\}$$

Theorem [Casali, preprint 2018]

Let N^4 be a singular 4-manifold with exactly one singular vertex. Then:

$$\bar{\mathcal{G}}(\textit{N}^{4}) = \mathcal{G}(\partial \check{\textit{N}}^{4}) = \textit{m} \geq 1 \quad \Longleftrightarrow \quad \check{\textit{N}}^{4} \in \{\mathbb{Y}^{4}_{\textit{m}}, \tilde{\mathbb{Y}}^{4}_{\textit{m}}\}$$

Theorem [Casali, preprint 2018]

Let N^4 be a singular 4-manifold with one singular vertex at most. Then:

$$\begin{split} \bar{\mathcal{G}}(\textit{N}^4) = \textit{rk}(\pi_1(\check{\textit{N}}^4)) = \rho \iff & \text{either } \textit{N}^4 \in \{\#_{\rho}(\mathbb{S}^1 \times \mathbb{S}^3), \, \#_{\rho}(\mathbb{S}^1 \tilde{\times} \mathbb{S}^3)\} \\ & \text{or } \check{\textit{N}}^4 \in \{\#_{\rho - \partial_{\rho}}(\mathbb{S}^1 \times \mathbb{S}^3) \# \mathbb{Y}_{\partial_{\rho}}^4, \\ & \#_{\rho - \partial_{\rho}}(\mathbb{S}^1 \tilde{\times} \mathbb{S}^3) \# \tilde{\mathbb{Y}}_{\partial_{\rho}}^4 \} \end{split}$$

$$\bar{\mathcal{G}}(N^4) \neq rk(\pi_1(\check{N}^4)) \implies \bar{\mathcal{G}}(N^4) - rk(\pi_1(\check{N}^4)) \geq 2$$

If $\bar{\mathcal{G}}(N^d) = \rho(\Gamma)$, then $K(\Gamma)$ may be assumed to have d+1 vertices.

If $\bar{\mathcal{G}}(N^d) = \rho(\Gamma)$, then $K(\Gamma)$ may be assumed to have d+1 vertices. If (Γ, γ) is such a graph representing M^4 and $\{r, s, t\} \cup \{i, j\} = \Delta_5$:

$$M^{4} = \underbrace{\mathbb{D}^{4} \cup (H_{1}^{(1)} \cup \cdots \cup H_{r_{1}}^{(1)}) \cup (H_{1}^{(2)} \cup \cdots \cup H_{r_{2}}^{(2)})}_{N(r,s,t)} \cup \underbrace{(H_{1}^{(3)} \cup \cdots \cup H_{r_{3}}^{(3)}) \cup H^{(4)}}_{N(i,j)}$$

If $\bar{\mathcal{G}}(N^d) = \rho(\Gamma)$, then $K(\Gamma)$ may be assumed to have d+1 vertices. If (Γ, γ) is such a graph representing M^4 and $\{r, s, t\} \cup \{i, j\} = \Delta_5$:

$$M^{4} = \underbrace{\mathbb{D}^{4} \cup (H_{1}^{(1)} \cup \cdots \cup H_{r_{1}}^{(1)}) \cup (H_{1}^{(2)} \cup \cdots \cup H_{r_{2}}^{(2)})}_{N(r,s,t)} \cup \underbrace{(H_{1}^{(3)} \cup \cdots \cup H_{r_{3}}^{(3)}) \cup H^{(4)}}_{N(i,j)}$$

where:

- N(r, s, t) = regular neighborhood of the subcomplex of $K(\Gamma)$ generated by vertices labelled by $\{r, s, t\}$ (union of 0,1,2-handles)
- N(i,j) = regular neighborhood of the subcomplex of $K(\Gamma)$ generated by vertices labelled by $\{i,j\}$ (union of 3,4-handles)

• no 2-handles $\Rightarrow M^4 \cong \#_m(\mathbb{S}^1 \times \mathbb{S}^3)$ (via [Montesinos, 1979] and [Laudenbach-Poenaru, 1972])

- no 2-handles $\Rightarrow M^4 \cong \#_m(\mathbb{S}^1 \times \mathbb{S}^3)$ (via [Montesinos, 1979] and [Laudenbach-Poenaru, 1972])
- one 2-handle and $\partial N(r, s, t) \cong \mathbb{S}^2 \times \mathbb{S}^1 \implies \check{N}^4 \cong \mathbb{S}^2 \times \mathbb{D}^2$ (via [Gabai, 1987], ensuring $(K, d) = (K_0, 0)$)
- one 2-handle and $\partial N(r, s, t) \cong \mathbb{S}^3 \implies M^4 \cong \mathbb{CP}^2$ (via [Gordon-Luecke, 1989], ensuring $(K, d) = (K_0, 1)$)
- one 2-handle and $\partial N(r,s,t)\cong L(2,1) \Rightarrow \check{N}^4\cong \xi_2$ (via [Kronheimer-Mrowka-Ozsvath-Szabo, 2007], ensuring $(K,d)=(K_0,2)$)

G-degree

G-degree

Definition

• G-degree of a (d+1)-colored graph Γ :

$$\omega_{\mathcal{G}}(\Gamma) = \sum_{i=1}^{\frac{d!}{2}} \rho_{\varepsilon^{(i)}}(\Gamma)$$

with $\{\varepsilon^{(1)}, \varepsilon^{(2)}, \dots, \varepsilon^{(\frac{d}{2})}\}$ set of all cyclic permutations of Δ_d (up to inverse), and $\rho_{\varepsilon^{(i)}}$ regular genus of Γ with respect to $\varepsilon^{(i)}$.

G-degree

Definition

• G-degree of a (d+1)-colored graph Γ :

$$\omega_{G}(\Gamma) = \sum_{i=1}^{\frac{d!}{2}} \rho_{\varepsilon^{(i)}}(\Gamma)$$

with $\{\varepsilon^{(1)}, \varepsilon^{(2)}, \dots, \varepsilon^{(\frac{d}{2})}\}$ set of all cyclic permutations of Δ_d (up to inverse), and $\rho_{\varepsilon^{(i)}}$ regular genus of Γ with respect to $\varepsilon^{(i)}$.

• G-degree of a singular d-manifold N:

$$\mathcal{D}_G(N) = \min\{\omega_G(\Gamma) \mid (\Gamma, \gamma) \text{ represents } N\}.$$

Basic notions on edge-colored graphs Representing ALL compact PL manifolds Generalized regular genus and classifications G-degree and classifications

R.Gurau originally defined G-degree within the theory of *Colored Tensors Models*, as an approach to *d*-dimensional Quantum Gravity.

R.Gurau originally defined G-degree within the theory of *Colored Tensors Models*, as an approach to *d*-dimensional Quantum Gravity.

Definition

A (d+1)-dimensional Colored Tensor Model is a formal partition function

$$\mathcal{Z}[N,\{t_B\}_{B\in\mathcal{CG}(d)}] := \int_{\mathsf{f}} \frac{dTd\overline{T}}{(2\pi)^{N^d}} e^{-N^{d-1}\overline{T}\cdot T + \sum_{B} \alpha_B B(\overline{T},T)}$$

where:

- $T, \overline{T} \in \otimes_d \mathbb{C}^N$
- $\mathcal{CG}(d)$ is the set of bipartite d-colored graphs
- $B(\overline{T},T)$ invariant encoded by a d-colored graph $B\in\mathcal{CG}(d),\ \alpha_B$ depending on t_B

Theorem [Bonzom-Gurau, 2012]

If
$$\alpha_B = N^{d-1-\frac{2}{(d-2)!}\omega_G(B)}\frac{t_B}{|\operatorname{Aut}(B)|}$$
,

the free energy $\frac{1}{N^d} \log \mathcal{Z}[N, \{t_B\}]$ admits $\frac{1}{N}$ expansion

$$\sum_{\omega_G > 0} N^{-\frac{2}{(d-1)!}\omega_G} F_{\omega_G}[\{t_B\}] \in \mathbb{C}[[N^{-1}, \{t_B\}]]$$

where the coefficients $F_{\omega_G}[\{t_B\}]$ are generating functions of connected (d+1)-colored graphs with fixed G-degree ω_G .

Theorem [Casali-Cristofori-Dartois-Grasselli 2018]

• For any singular 4-manifold N,

$$\mathcal{D}_G(N) \equiv 0 \mod 6$$

Theorem [Casali-Cristofori-Dartois-Grasselli 2018]

• For any singular 4-manifold N,

$$\mathcal{D}_G(N) \equiv 0 \mod 6$$

• For any closed PL 4-manifold M,

$$\mathcal{D}_{G}(M) = 6(\underbrace{k(M)}_{\mathsf{PL}} + \underbrace{\chi(M)}_{\mathsf{TOP}} - 2)$$

Theorem [Casali, preprint 2018]

Let N^4 be a singular 4-manifold with $\mathcal{D}_G(N^4) \leq 18$. Then:

•
$$\mathcal{D}_G(N^4) = 0 \iff N^4 \cong \mathbb{S}^4$$
;

$$\begin{array}{ll} \bullet \ \mathcal{D}_G(\textit{N}^4) = 12 & \Longleftrightarrow \quad \text{either} \ \textit{N}^4 \in \{\mathbb{S}^1 \times \mathbb{S}^3, \ \mathbb{S}^1 \tilde{\times} \mathbb{S}^3\} \\ & \text{or} \quad \check{\textit{N}}^4 \in \{\mathbb{Y}^4_1, \ \tilde{\mathbb{Y}}^4_1\}; \end{array}$$

•
$$\mathcal{D}_G(N^4) = 18 \iff \check{N}^4 \in \{L(2,1) \times I, (\mathbb{S}^1 \times \mathbb{S}^2) \times I, (\mathbb{S}^1 \tilde{\times} \mathbb{S}^2) \times I\}.$$

Theorem [Casali, preprint 2018]

Let N^4 be a singular 4-manifold with $\mathcal{D}_G(N^4) \leq 18$. Then:

•
$$\mathcal{D}_G(N^4) = 0 \iff N^4 \cong \mathbb{S}^4$$
;

$$\begin{array}{ccc} \bullet \ \mathcal{D}_G(\textit{N}^4) = 12 & \Longleftrightarrow & \text{either} \ \textit{N}^4 \in \{\mathbb{S}^1 \times \mathbb{S}^3, \ \mathbb{S}^1 \tilde{\times} \mathbb{S}^3\} \\ & \text{or} & \check{\textit{N}}^4 \in \{\mathbb{Y}_1^4, \ \tilde{\mathbb{Y}}_1^4\}; \end{array}$$

$$\bullet \ \mathcal{D}_{\textit{G}}(\textit{N}^{4}) = 18 \ \iff \ \check{\textit{N}}^{4} \in \{\textit{L}(2,1) \times \textit{I}, \ (\mathbb{S}^{1} \times \mathbb{S}^{2}) \times \textit{I}, \ (\mathbb{S}^{1} \tilde{\times} \mathbb{S}^{2}) \times \textit{I}\}.$$

Theorem [Casali, preprint 2018]

If N^4 is a singular 4-manifold with one singular vertex at most, then:

$$\mathcal{D}_{G}(N^{4}) \ = \ 24 \iff \text{ either } N^{4} \in \{\#_{2}(\mathbb{S}^{1} \times \mathbb{S}^{3}), \ \#_{2}(\mathbb{S}^{1} \tilde{\times} \mathbb{S}^{3}), \ \mathbb{CP}^{2}\}$$
 or $\check{N}^{4} \in \{\mathbb{Y}_{2}^{4}, \ \check{\mathbb{Y}}_{2}^{4}, \ \mathbb{Y}_{1}^{4} \#(\mathbb{S}^{1} \times \mathbb{S}^{3}), \ \check{\mathbb{Y}}_{1}^{4} \#(\mathbb{S}^{1} \times \mathbb{S}^{3}),$
$$\mathbb{S}^{2} \times \mathbb{D}^{2}, \ \xi_{2}\}.$$

Theorem [Bonzom-Gurau, 2012]

If
$$\alpha_B = N^{d-1-\frac{2}{(d-2)!}\omega_G(B)} \frac{t_B}{|\operatorname{Aut}(B)|}$$
,

the free energy $\frac{1}{N^d} \log \mathcal{Z}[N,\{t_B\}]$ admits $\frac{1}{N}$ expansion

$$\sum_{\omega_G \ge 0} N^{-\frac{2}{(d-1)!}\omega_G} F_{\omega_G}[\{t_B\}] \in \mathbb{C}[[N^{-1}, \{t_B\}]]$$

where the coefficients $F_{\omega_G}[\{t_B\}]$ are generating functions of connected (d+1)-colored graphs with fixed G-degree ω_G .

For d=4, all compact 4-manifolds involved in the starting terms of the 1/N expansion (up to $\omega_G=24$) are now identified!

