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Professor José Maŕıa Montesinos Amilibia

Oh my knots!

This volume contains the contributions presented by several colleagues as a tribute
to the mathematical and human qualities of José Maŕıa Montesinos Amilibia on the
occasion of his seventieth birthday. The editors would like to express their thanks
to the contributors and their very especial gratitude to José Maŕıa for his example
through many years of scientific and personal contact.

Marco Castrillón
Elena Mart́ın-Peinador
José M. Rodŕıguez-Sanjurjo
Jesús M. Ruiz





Muchas gracias, José Maŕıa

Este es un acto importante para los que estamos aqúı, algunos de los cuales conocen a
José Maŕıa Montesinos desde hace más de 50 años. Hemos venido para darle las gra-
cias por muchas cosas, pero sobre todo por su ejemplo, el ejemplo de cómo es posible
hacer cosas valiosas en tiempo dif́ıciles o muy dif́ıciles, como fueron los que vivió en
la primera etapa de su investigación, desde 1967 hasta que se fue a Estados Unidos
en 1976. Aqúı, en la facultad, solo y por sus propios medios, realizó los que, según su
propio testimonio, son sus mejores trabajos. Esto se puede constatar también en su
página web de la Academia donde cita los que cree son sus trabajos más interesantes,
todos pertenecientes a aquella época. Algunos publicados en revistas muy relevantes,
como el Bulletin of the AMS, otros en revistas más modestas, pero todos conteniendo
resultados excelentes. También la cŕıtica, en particular el Mathematical Reviews, ha
sido expĺıcita en su reconocimiento de la calidad de los trabajos de aquel periodo.
Posteriormente Montesinos conoció y aprendió mucho de Thurston y de otros: Cas-
son, Kirby, Matsumoto, Edwards, Siebenmann y Fico González Acuña, y siempre ha
manifestado su admiración y reconocimiento hacia ellos. Evidentemente, su actividad
cient́ıfica posterior se ha beneficiado enormemente de estos contactos y de colabora-
ciones como la que ha mantenido con Maŕıa Teresa Lozano y Mike Hilden a lo largo
de tantos años.

En sentido inverso se puede decir que otros aprendieron no menos de él. Esto se ha
podido comprobar en el flujo continuo de visitantes de todo el mundo que han venido
al departamento para aprender. Éste es el sentido opuesto al que nos ha llevado a la
mayoŕıa a ir fuera para adquirir conocimiento.

Montesinos ha obtenido un gran reconocimiento cient́ıfico. Él ha valorado y
agradecido el reconocimiento, cient́ıfico y humano, de sus colegas. Especialmente
importante para él fue el que le dio Ralph Fox en su etapa inicial. Gracias al apoyo
que le prestó, pudo saber que iba en la buena dirección y que sus resultados eran
significativos. Desgraciadamente, Fox falleció antes del primer viaje de José Maŕıa
a Estados Unidos y no pudo conocerle personalmente. Sin embargo Montesinos no
ha buscado los focos, no se siente cómodo cuando es objeto de la atención pública
(espero que este acto sea una excepción). En el año 1992 se celebró en Paŕıs el
primer congreso de la Sociedad Matemática Europea. Era una ocasión importante,
el lanzamiento de esta sociedad, y fueron invitados diez conferenciantes plenarios de
la talla de Arnold, Donaldson y Mumford. Uno de ellos era Montesinos, quizá al-
gunos recuerden los carteles que anunciaban el congreso, en los que él aparećıa en
esa lista. Sin embargo surgió un problema de financiación y José Maŕıa renunció a la

v



invitación. Aparte de las razones económicas, creo percibir que esa decisión estuvo
motivada por una humildad básica que siempre me ha parecido ver en su personalidad.

Montesinos disfruta del contacto humano, y los demás perciben cuánto pueden
ganar estando a su lado y hablando con él. En cualquier reunión cient́ıfica se puede
advertir su popularidad y la relación amistosa de que disfruta con mucha gente. Pero,
al mismo tiempo, necesita de la soledad, el retiro. Para su vida interior y para sus
teoremas. Los teoremas que fueron hechos en su juventud y los que sigue haciendo en
las montañas de Guadarrama y de Gredos. Recientemente nos dećıa en un seminario
que uno de sus últimos resultados le hab́ıa costado cinco salidas al monte. Le deseo
muchas más salidas al monte, muchos más buenos teoremas y que siga viniendo por
aqúı para contárnoslos. Muchas gracias de nuevo, José Maŕıa.

Madrid, 8 de septiembre de 2015 José Manuel Rodŕıguez-Sanjurjo
Facultad de Ciencias Matemáticas, UCM
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Classifying PL 4-manifolds via
crystallizations:

results and open problems

Maria Rita CASALI, Paola CRISTOFORI and Carlo GAGLIARDI∗
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To our friend José Maŕıa, with admiration and gratitude.

Abstract

Crystallization theory is a graph-theoretical representation method for compact
PL-manifolds of arbitrary dimension, which makes use of a particular class of
edge-coloured graphs, which are dual to coloured (pseudo-)triangulations. The
purely combinatorial nature of crystallizations makes them particularly suitable
for automatic generation and classification, as well as for the introduction and
study of graph-defined invariants for PL-manifolds.

The present survey paper focuses on the 4-dimensional case, presenting up-
to-date results about the PL classification of closed 4-manifolds, by means of
two such PL invariants: regular genus and gem-complexity.

Open problems are also presented, mainly concerning different classification
of 4-manifolds in TOP and DIFF=PL categories, and a possible approach to
the 4-dimensional Smooth Poincaré Conjecture.

2010 Mathematics Subject Classification: 57Q15 - 57N13 - 57M15.
Key words: PL 4-manifold, coloured graph, coloured triangulation, regular genus,
gem-complexity, simple crystallization, semi-simple crystallization.

∗Work supported by the “National Group for Algebraic and Geometric Structures, and their
Applications” (GNSAGA - INDAM) and by M.I.U.R. of Italy (project “Strutture Geometriche,
Combinatoria e loro Applicazioni”).
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1. Introduction

Crystallization theory is a representation theory for PL-manifolds by means of edge-
coloured graphs, which are dual 1-skeletons of particular (pseudo)-triangulations.
These graphs are called crystallizations if the associated triangulations have the min-
imum possible number of vertices.

The peculiarity of this method consists in its universality: in fact, it enables
to represent and study the whole class of PL-manifolds, without restrictions about
dimension, boundary property and orientability (despite what happens with other
classical representation theories, whose extension beyond dimension three appears to
be quite difficult to achieve, or restricted to particular hypotheses).

The possibility of performing a purely combinatorial approach to general PL-
manifolds is of particular interest in dimension greater or equal to four, where the
difference between the categories TOP and PL (and DIFF, if n ≥ 5) must be taken
into account. For example, it is very useful to have combinatorial moves on the
representing objects, which realize the PL-homeomorphism (and not only the TOP-
homeomorphism) between the represented manifolds, or to define PL invariants of
the manifolds (possibly distinguishing different PL structures on the same TOP-
manifold), whose computation can be performed directly on the combinatorial ob-
jects.

Within crystallization theory, both tools are available: suitable sets of moves on
edge-coloured graphs exist, which enable to recognize different crystallizations of the
same PL n-manifold, and some interesting graph-defined invariants for PL-manifolds
have been introduced and deeply studied.

In particular:

- the gem-complexity k(Mn) of a PL n-manifold Mn is the integer p − 1, where
2p is the minimum order of a crystallization of Mn;

- the regular genus G(Mn) of an orientable (resp. non-orientable) PL n-manifold
Mn is defined as the minimum genus (resp. half the minimum genus) of a
surface into which a crystallization of Mn regularly embeds (see Section 2).

Note that the regular genus extends to higher dimension the classical concept of
Heegaard genus of a 3-manifold, and succeeds in characterizing PL-spheres and disks
of arbitrary dimension (see Subsection 4.1); on the other hand, gem-complexity is
the natural invariant involved in possible generation and analysis of catalogues of PL
n-manifolds via crystallizations.1

The present survey paper focuses on the 4-dimensional closed case, and presents
in a unified view updated results - most of them very recent and still in publication -

1In dimension three, the automatic generation and analysis of catalogues of 3-dimensional crys-
tallizations for increasing values of their vertex-number has already produced the classification of all
closed 3-manifolds up to gem-complexity 14: see [4], [18].
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about topological and PL classifications of closed PL 4-manifolds according to both
gem-complexity and regular genus. Some new results are also included.

As regards regular genus, the classifying results related to closed PL 4-manifolds
mainly concern the case of “low” regular genus (Proposition 4.2) and the case of
“restricted gap” between the regular genus and the rank of the fundamental group of
the manifold (Proposition 4.3). All of them are based essentially on the existence of
particular types of handle decompositions induced by crystallizations of the involved
PL 4-manifolds, and make use of an important result by Montesinos [45] ensuring the
uniqueness of the boundary identification of two handlebodies (see Subsection 4.1).

On the other hand, the classifying results via gem-complexity are based on the
development of an effective algorithm for the automatic generation and classification
of the catalogue of 4-manifold crystallizations up to a fixed number of vertices (see
Subsection 4.2). Theorem 4.6 summarizes the complete PL classification of closed
orientable (resp. non-orientable) PL 4-manifolds up to gem-complexity 8 (resp. up
to gem-complexity 9), due to [20], and contains also a new statement, concerning the
partial - and in progress - classification of crystallizations with 20 vertices.

The difficulty of the exact calculation of both the regular genus and gem-complexity
for any given PL 4-manifold, makes the search for significant lower and upper bounds
a relevant task. In Section 3 a result - recently obtained in [6] - is presented, yield-
ing sharp lower bounds for both invariants, by means of the Euler characteristic and
the rank of the fundamental group of the involved 4-manifold (Theorem 3.1). These
bounds turn out to be very useful to improve estimation for regular genus and gem-
complexity of product 4-manifolds (see Subsection 3.2), and to obtain a new proof of
the TOP classification of simply-connected 4-manifolds up to regular genus 43 and
gem-complexity 65 (Theorem 3.5).

Section 5 is devoted to the so called semi-simple crystallizations, introduced in [6]
so that the represented PL 4-manifolds attain the above lower bounds. The additivity
of both gem-complexity and regular genus with respect to connected sum is proved
for such a class of PL 4-manifolds, which comprehends all “standard” ones and their
connected sums.

Note that additivity of regular genus for closed PL 4-manifolds was conjectured in
[31] and has been proved to imply - by a theorem of Wall - the 4-dimensional Smooth
Poincaré Conjecture. Therefore, the identification of classes of manifolds for which
the property holds is an interesting open problem (see Section 6.2).

Other further developments, mainly concerning different classification of 4-mani-
folds in TOP and DIFF=PL categories, are reviewed in the last section of the paper.
In particular, it is discussed the possible application of the classification algorithm to
the crystallizations arising from the two known 16-vertices and 17-vertices triangula-
tions of the K3-surface obtained in [26] and [46] respectively.
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2. Basic notions of crystallization theory

In the present work, when not otherwise explicitly specified, we will consider only
closed, connected piecewise linear manifolds of dimension n = 4 (simply referred to
as “PL 4-manifolds”). Therefore, although edge-coloured graphs are a representation
tool for the whole class of PL-manifolds, in this section we will briefly review basic
notions and results of the theory with respect to this particular case.

A 5-coloured graph (without boundary) is a pair (Γ, γ), where Γ = (V (Γ), E(Γ))
is a regular multigraph (i.e. it may include multiple edges, but no loop) of degree
five and γ : E(Γ)→ ∆4 = {0, 1, 2, 3, 4} is a proper edge-coloration (i.e. it is injective
when restricted to the set of edges incident to any vertex of Γ).

The elements of the set ∆4 are called the colours of Γ; thus, for every i ∈ ∆4, an
i-coloured edge is an element e ∈ E(Γ) such that γ(e) = i. For every i, j, k ∈ ∆4 let
Γı̂ (resp. Γijk) (resp. Γij) be the subgraph obtained from (Γ, γ) by deleting all the
edges of colour i (resp. c ∈ ∆4 − {i, j, k}) (resp. c ∈ ∆4 − {i, j}). The connected
components of Γı̂ (resp. Γijk) (resp. Γij) are called ı̂-residues (resp. {i, j, k}-coloured
residues) (resp. {i, j}-coloured cycles) of Γ, and their number is denoted by gı̂ (resp.
gijk) (resp. gij).

A 5-coloured graph (Γ, γ) is called contracted iff, for each i ∈ ∆4, the subgraph Γı̂
is connected (i.e. iff gı̂ = 1 ∀i ∈ ∆4).

Every 5-coloured graph (Γ, γ) may be thought of as the combinatorial visualization
of a 4-dimensional labelled pseudocomplex K(Γ), which is constructed in the following
way:

• for each vertex v ∈ V (Γ), take a 4-simplex σ(v), with vertices labelled 0, 1, 2, 3, 4;

• for each j-coloured edge between v and w (v, w ∈ V (Γ)), identify the 3-
dimensional faces of σ(v) and σ(w) opposite to the vertex labelled j, so that
equally labelled vertices coincide.

In case K(Γ) triangulates a PL 4-manifold M , then (Γ, γ) is called a gem (gem =
graph encoded manifold) representing M .

In the following, for sake of conciseness, we will write Γ instead of (Γ, γ), when
there is no ambiguity with regard to the edge-coloration.

The following proposition summarizes some useful results which come directly
from the above construction.

Proposition 2.1 If Γ is an order 2p gem of a PL 4-manifold M , then:

(a) M is orientable iff Γ is bipartite;

(b) there is a bijection between i-labelled vertices (resp. 1-simplices whose vertices
are labelled ∆4 − {i, j, k}) (resp. 2-simplices whose vertices are labelled ∆4 −
{i, j}) of K(Γ) and ı̂-residues (resp. {i, j, k}-coloured residues) (resp. {i, j}-
coloured cycles) of Γ;
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(c) χ(|K(Γ)|) = −3p+
∑
i,j gij −

∑
i,j,k gijk +

∑
i gı̂;

(d) 2gijk = gij + gik + gjk − p for each triple (i, j, k) ∈ ∆4;

(e) for each distinct i, j, k ∈ ∆4, there exists a presentation of π1(M) whose gener-
ators are in bijection with the connected components of Γijk but one.

A gem representing a PL 4-manifold M is a crystallization of M if it is also
a contracted graph; by the above property (b), this is equivalent to require that
the associated pseudocomplex K(Γ) contains exactly five vertices (one for each label
i ∈ ∆4). Pezzana Theorem and its subsequent improvements prove that every PL-
manifold admits a crystallization (see [32]).

The following proposition allows to characterize crystallizations of PL 4-manifolds
among 5-coloured graphs.

Proposition 2.2 A 5-coloured graph Γ is a crystallization of a PL 4-manifold if and
only if, for every c ∈ ∆4, Γĉ is connected and represents S3.

Catalogues of crystallizations of PL manifolds have been obtained both in dimen-
sion three (see [41], [17] and [18] for the 3-dimensional orientable case and [14], [16]
and [4] for the non-orientable one) and four [20]. As mentioned in Section 1, they are
constructed with respect to a suitable graph-defined PL invariant, which measures
how “complicated” the representing combinatorial object is2.

Definition 1 Given a PL n-manifold Mn, its gem-complexity is the non-negative
integer k(Mn) = p− 1, where 2p is the minimum order of a crystallization of Mn.

An h-dipole (1 ≤ h ≤ 4) of a 5-coloured graph Γ is a subgraph of order two of
Γ, having h edges coloured by {c1, . . . , ch}, such that its vertices belong to different
connected components of Γ∆4−{c1,...,ch}.

A ρ-pair in Γ is a pair of equally coloured edges both belonging to at least three
common bicoloured cycles of Γ.

It is proved in [20, Proposition 20] that, if M is a handle-free PL 4-manifold
(i.e.: if it admits neither the orientable nor the non-orientable S3-bundle over S1 as
a connected summand), then k(M) = p− 1, where 2p is the order of a crystallization
of M with no dipoles and no ρ-pairs.

Crystallizations with these properties are called rigid dipole-free crystallizations;
they are exactly the elements considered in the existing crystallization catalogues in
dimension four.3

Another graph-based invariant for PL n-manifolds, called regular genus, is related
to some of the most interesting results of crystallization theory4. It was introduced

2In dimension three, the relations between this invariant and the well-known Matveev’s complexity
have been widely investigated: see [16], [17], [19] and [22].

3A slightly modified definition of rigidity is required in 3-dimensional crystallization catalogues.
4See, for example, [11], [12] and [25] for 4-dimensional results, [23] and [13] for 5-dimensional

ones.
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in [35] and its definition relies on the existence of a particular type of embedding into
a surface for gems of arbitrary dimension.

As far as the 4-dimensional case is concerned, it is well-known that, if Γ is an
order 2p crystallization of an orientable (resp. non-orientable) PL 4-manifold M,
then for every cyclic permutation ε = (εo, ε1, ε2, ε3, ε4 = 4) of ∆4 there exists a so-
called regular embedding5 iε : |Γ| → Fε, where Fε is the closed orientable (resp.
non-orientable) surface of genus ρε(Γ) (resp. 2ρε(Γ)), where ρε(Γ) may be directly
computed by the following formula (see [35] for details and suitable extensions in
general dimension). ∑

i∈Z5

gεiεi+1
− 3p = 2− 2ρε(Γ). (2.1)

Definition 2 The regular genus of a bipartite (resp. non-bipartite) 5-coloured graph
Γ is defined as the minimum genus (resp. half the minimum genus) of a surface into
which Γ regularly embeds:

ρ(Γ) = min
ε
{ρε(Γ)};

the regular genus of a PL 4-manifold M is defined as the minimum regular genus of
a crystallization of M :

G(M) = min{ρ(Γ) / (Γ, γ) crystallization of M}.

Finally, we recall that, given two 5-coloured graphs Γ1 and Γ2 representing PL
4-manifolds M1 and M2 respectively, for any choice of v1 ∈ V (Γ1) and v2 ∈ V (Γ2), it
is possible to construct a new 5-coloured graph Γ1#v1,v2Γ2, called a graph connected
sum of Γ1 and Γ2, by deleting v1 and v2 and welding the hanging edges according to
their colours.

Γ1#v1,v2Γ2 turns out to be a gem of one of the two possible connected sums of
M1 and M2 (see [32] for details).

3. Lower bounds and their consequences

3.1. Lower bounds for regular genus and gem-complexity

The following result - recently obtained by Basak and Casali - is very useful to inves-
tigate PL-manifolds of dimension four by means of the two invariants regular genus
and gem-complexity.

Theorem 3.1 [6] Let M be a PL 4-manifold with rk(π1(M)) = m. Then:

k(M) ≥ 3χ(M) + 10m− 6;

G(M) ≥ 2χ(M) + 5m− 4.
5By short, it is a cellular embedding whose regions are bounded by the images of {εi, εi+1}-

coloured cycles, for each i ∈ Z5.
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Roughly speaking, we can say that the proof of the inequality concerning gem-
complexity is based on the Dehn-Sommerville equations in dimension four, applied to
the contracted pseudo-triangulation K(Γ) of M associated to any crystallization of
M , by making use of the relations gijk ≥ m+ 1 for any distinct i, j, k ∈ ∆4 (coming
from the assumption rk(π1(M)) = m and Proposition 2.1(e)).

On the contrary, the inequality concerning regular genus makes use of the following
crucial steps (see [6, Theorem 1] for details):

• By the first inequality of Theorem 3.1, the minimum possible order of a crys-
tallization of M is 2p̄ = 6χ(M) + 10(2m − 1); hence, any crystallization (Γ, γ)
of M has #V (Γ) = 2p̄+ 2q for some non-negative integer q.

• For any distinct i, j, k ∈ ∆4, the assumption rk(π1(M)) = m implies gijk =
(m+ 1) + tijk, where tijk ∈ Z, tijk ≥ 0 and

∑
0≤i<j<k≤4 tijk = q.

• By Proposition 2.1(d), the ten relations gij + gik + gjk = 2gijk + (p̄ + q) (0 ≤
i < j < k ≤ 4) give rise to a linear system of equations (in the numbers of
the different bicoloured cycles) which may be solved, so to obtain the following
lower bound (surprisingly not depending from q) for the regular genus of Γ with

respect to any cyclic permutation ε of ∆4: ρε(Γ) ≥ 2(p̄−1)−5m
3 .

• Since both the crystallization Γ of M and the permutation ε of ∆4 are arbitrary,
the second inequality of Theorem 3.1 easily follows.

3.2. Regular genus and gem-complexity of product 4-manifolds

In [6], Theorem 3.1 is applied in order to significantly improve some lower bounds
for the regular genus of PL 4-manifolds, which have been proved by various authors
via different techniques; meanwhile, similar lower bounds are obtained also for gem-
complexity.

Proposition 3.2 [6] For any closed 3-manifold M3 such that π1(M3) is a finite
abelian group, then:

G(M3 × S1) ≥ 5rk(π1(M3)) + 1 and k(M3 × S1) ≥ 10rk(π1(M3))− 6.

In particular:

G(L(p, q)× S1) ≥ 6 and k(L(p, q)× S1) ≥ 4.

Proposition 3.3 [6] Let Tg (resp. Uh) denote the orientable (resp. non-orientable)
surface of genus g ≥ 0 (resp. h ≥ 1). Then:

G(Tg × Tr) ≥ 8gr + 2g + 2r + 4 and k(Tg × Tr) ≥ 12gr + 8g + 8r + 6;

G(Tg × Uh) ≥ 4gh+ 2g + h+ 4 and k(Tg × Uh) ≥ 6gh+ 8g + 4h+ 6;
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G(Uh × Uk) ≥ 2hk + h+ k + 4 and k(Uh × Uk) ≥ 3hk + 4h+ 4k + 6.

In particular:

G(S2 × Tg) ≥ 2g + 4 and k(S2 × Tg) ≥ 8g + 6;

G(S2 × Uh) ≥ h+ 4 and k(S2 × Uh) ≥ 4h+ 6.

Moreover, the last inequality of Proposition 3.3 concerning regular genus (resp.
gem-complexity), together with the existence of a genus five (resp. order 24) crys-
tallization of S2 × RP2 depicted in [6, Figure 3], allows the exact calculation of the
regular genus (resp. an estimation with “strict range” of the gem-complexity) of the
involved 4-manifold:

Proposition 3.4 [6]

G(S2 × RP2) = 5 and k(S2 × RP2) ∈ {10, 11}.

3.3. TOP classification of simply-connected 4-manifolds via regular genus
and gem-complexity

A direct application of Theorem 3.1 to the case of simply-connected PL 4-manifolds,
combined with well-known results on TOP simply-connected 4-manifolds, yields the
following interesting result related to the topological classification of simply-connected
PL 4-manifolds with respect both to gem-complexity and to regular genus:6

Theorem 3.5 [20] Let M be a simply-connected PL 4-manifold. If either k(M) ≤ 65
or G(M) ≤ 43, then M is TOP-homeomorphic to

(#rCP2)#(#r′(−CP2)) or #s(S2 × S2),

where r + r′ = β2(M), s = 1
2β2(M) and β2(M) is the second Betti number of M .

Proof. Since M is assumed to be simply-connected, Theorem 3.1 yields:

k(M) ≥ 3β2(M) (3.1)

and

G(M) ≥ 2β2(M). (3.2)

6Note that the proof presented in the present survey paper is easier than the original one (con-
tained in [20, Proposition 20 and Proposition 23]), since it directly makes use of the inequalities
derived from Theorem 3.1.
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Now, the classical theorems of Freedman and Donaldson (see [33]) about the TOP
classification of simply-connected closed 4-manifolds, together with more recent re-
sults by Furuta [34], ensure that intersection forms of type

±2nE8 ⊕ s
(

0 1
1 0

)
do represent a PL 4-manifold only if s > 2n; hence, only PL 4-manifolds with β2(M) ≥
22 occur in this case. The thesis directly follows from the fact that both k(M) ≤ 65
and G(M) ≤ 43 imply β2(M) ≤ 21; so, only intersection forms of the two simplest
types are allowed:

r[1]⊕ r′[−1] or s

(
0 1
1 0

)
where r + r′ = β2(M) or s = 1

2β2(M). �

4. PL classification via regular genus and gem-complexity

4.1. Classifying results via regular genus

The first, important property of regular genus consists in the possibility of recognizing
spheres (and disks7) of arbitrary dimension, in full analogy with well-known low-
dimensional characterizations.

Theorem 4.1 [31] For every closed PL n-manifold Mn, with n ≥ 2,

G(Mn) = 0 ⇐⇒ Mn ∼= Sn

Actually, the regular genus shares many properties with other low-dimensional
genera (see [3] for a survey on results in general dimension, including the boundary
case); for example, for every PL n-manifold Mn, n ≥ 3, G(Mn) is a non-negative
integer invariant, so that G(Mn) ≥ rk(π1(Mn)).

Starting from the above results, many efforts have been spent in order to investi-
gate the relation existing between the “PL structure” of a manifold Mn and its regular
genus G(Mn), in order to yield classifying results via regular genus in PL category
and dimension n, both in the closed and in the boundary case. The best results have
been achieved in dimension 4 and 5, and concern the case of “low” regular genus, the
case of “restricted gap” between the regular genus of the manifold and the regular
genus of its boundary, and the case of “restricted gap” between the regular genus and
the rank of the fundamental group of the manifold.

7Several results of this subsection admit suitable extensions to PL manifolds with non-empty
boundary. However, for sake of conciseness, we restrict the statement of Theorem 4.1 to the closed
case, as everywhere in the paper.
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The following Propositions 4.2 and 4.3 exactly deal with the first and third cases in
the closed 4-dimensional setting, while the second one, which concerns PL 4-manifolds
with boundary, is out of the scope of the present survey.

From now on, S1×S3 (resp. S1 ×̃S3) (resp. S1⊗S3) will denote the orientable
(resp. non-orientable) (resp. either orientable or non-orientable) S3-bundle over S1.

Proposition 4.2 [27, 28, 29]

a) Let M be a closed orientable 4-manifold; then:

G(M) = ρ ≤ 3 =⇒ M ∼=

{
#ρ(S1 × S3)

#ρ−2(S1 × S3)#CP2

b) Let M be a closed non-orientable 4-manifold; then:

G(M) = ρ ≤ 2 =⇒ M ∼= #ρ(S1 ×̃S3)

Proposition 4.3 [12, 25]

a) Let M be a closed (orientable or non-orientable) 4-manifold; then:

G(M) = rk(π1(M)) = ρ ⇐⇒ M ∼= #ρ(S1 ⊗ S3)

b) Let M be a closed 4-manifold; then:

• G(M) 6= rk(π1(M)) =⇒ G(M)− rk(π1(M)) ≥ 2

• G(M)−rk(π1(M)) = 2 and π1(M) = ∗mZ ⇐⇒ M ∼= #m(S1⊗ S3)#CP2

• No closed 4-manifold M exists with G(M) − rk(π1(M)) = 3 and
π1(M) = ∗mZ.

In short, the proofs of Propositions 4.2 and 4.3 are based on the fact that, for every
crystallization Γ of a PL 4-manifold M , the associated triangulation K(Γ) gives rise
to a suitable handle-decomposition of M , which reflects the combinatorial properties
of Γ.
First of all, we recall that every closed PL 4-manifoldM admits a handle-decomposition

M = H(0) ∪ (H
(1)
1 ∪ · · · ∪H(1)

r1 ) ∪ (H
(2)
1 ∪ · · · ∪H(2)

r2 ) ∪ (H
(3)
1 ∪ · · · ∪H(3)

r3 ) ∪H(4)

where H(0) = D4 and each p-handle H
(p)
i = Dp × D4−p (1 ≤ p ≤ 4, 1 ≤ i ≤ rp) is

endowed with an an embedding (called attaching map) f
(p)
i : ∂Dp×D4−p → ∂(H(0) ∪

. . . (H
(p−1)
1 ∪ · · · ∪H(p−1)

rp−1 )).
In particular, for any crystallization Γ of a PL 4-manifold M and for any partition

{{i, j, k}, {r, s}} of ∆4, then M admits a decomposition of type M = N(i, j, k) ∪φ
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N(r, s), where N(i, j, k) (resp. N(r, s)) denotes a regular neighbourhood of the sub-
complex K(i, j, k) (resp. K(r, s)) of K(Γ) generated by the vertices labelled {i, j, k}
(resp. {r, s}) and φ is a boundary identification.

The hypotheses assumed about regular genus in most of the cases of the above
statements imply the associated handle-decomposition to lack in 2-handles, since the
subcomplex K(i, j, k) collapses to a graph; this fact allows to recognize the 4-manifold
M as a connected sum of copies of S1⊗ S3, by means of an important result by Mon-
tesinos [45] ensuring the uniqueness of the boundary identification of two handlebodies
(see the quoted papers for details).

Under different assumptions, the associated handle-decomposition contains ex-
actly one 2-handle and no 3-handle (i.e.: K(i, j, k) consists of two triangles with
common boundary, possibly with some more “free edges”, in bijection with the “free
edges” constituting K(r, s)); so, the attachment of the unique 2-handle has to give
rise to a spherical boundary, and hence a CP2 component is surely obtained, via a
well-known result by Gordon-Luecke about surgery on knots.

Remark 1 Note that the classification of orientable (resp. non-orientable) 4-manifolds
with regular genus four (risp. three) is given in [29, Theorem 2] (resp. [29, Theo-
rem 4]) only up to TOP-homeomorphism8, while the classification of non-orientable
4-manifolds with regular genus four is not known.

However, Proposition 4.3 yields the following partial results, concerning the PL
classification of a PL 4-manifold M with rk(π1(M)) = m:

• if G(M) = 3 and m = 3, then M is PL-homeomorphic to #3(S1 ⊗ S3);

• if G(M) = 4, m = 2 and the fundamental group of M is free, then M is PL-
homeomorphic to CP2#2(S1 ⊗ S3).

Moreover, no PL 4-manifold exists with G(M) = 3 (resp. G(M) = 4) and m ∈
{0, 2} (resp. m = 3).

In Subsection 5.3 we will “almost complete”9 the PL classification up to regular
genus four, within the class of PL 4-manifolds admitting semi-simple crystallizations.

4.2. Catalogues of crystallizations

By Proposition 2.2, the generation of catalogues of crystallizations of PL 4-manifolds
with a fixed number of vertices 2p requires the prior generation and recognition of all
gems (with 2p vertices) representing the 3-sphere. In fact, any order 2p crystallization
of a PL 4-manifold can be obtained from such a gem by adding the 4-coloured edges.

8Recall that, in virtue of Theorem 3.5, the classification of simply-connected 4-manifolds in cat-
egory TOP is now trivial, up to regular genus 43.

9Only the case G(M) = 4 and rk(π1(M)) = 2, with not free fundamental group, remains open.
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However, this kind of procedure is very intensive even for a low number of vertices
and requires large computing resources. A way to face this problem is to find combi-
natorial configurations in the graphs, which can be eliminated without changing the
manifold. Examples of such configurations are dipoles and ρ-pairs.

As pointed out in Section 2 the restriction of the catalogues to rigid dipole-free
crystallizations does not affect their completeness.

Furthermore, an efficient catalogue must not contain crystallizations, whose as-
sociated triangulations coincide. This problem has been solved by associating to
each crystallization Γ its code, i.e. a numerical string which identifies Γ up to colour-
isomorphisms (i.e. isomorphisms of graphs which preserve colours up to a permutation
of ∆4: see [41], [24]).

Catalogues of (rigid dipole-free) crystallizations of PL 4-manifolds have been gen-
erated up to 20 vertices and the represented manifolds have been completely classified
up to 18 vertices.

In order to describe the algorithms for generation and classification of these cata-
logues, we need first to fix some notations.

For each p ≥ 1, let C(2p) (resp. C̃(2p)) denote the catalogue of all not colour-
isomorphic rigid dipole-free bipartite (resp. non-bipartite) crystallizations of 4-mani-
folds with 2p vertices.

Note that if Γ ∈ C(2p) ∪ C̃(2p), then Γ4̂ is a (not necessarily contracted, nor rigid)
4-coloured graph representing S3 and lacking in ρ-pairs involving three bicoloured
cycles. Let S(2p) denotes the set of such 4-coloured graphs10: the generation of C(2p)

and C̃(2p) is performed by adding 4-coloured edges to the elements of S(2p), in all
possible ways so as to obtain crystallizations of 4-manifolds. Duplicates are then
eliminated by comparing their codes.

Actually, not all attachments must be tried: the condition of representing a mani-
fold imposes combinatorial restrictions on the set of possible “uncompleted” graphs
(i.e. graphs obtained from an element of S(2p) by attaching less than p 4-coloured
edges).

These conditions allow to implement a branch and bound technique to prune the
tree of possible attachments (see [44] for details) and reduce considerably both the
computation time and the size of the resulting catalogues11.

Table 1 shows information about the catalogues C(2p) and C̃(2p) (p ≤ 10), which
have been obtained in [20] by the above algorithm.

10S(2p) is constructed by a suitable adaptation of the 3-dimensional generation algorithm; recog-
nition of the 3-sphere is performed by comparison with the 3-dimensional catalogue.

11The generation algorithm has been implemented through a parallelization strategy ([44]); it ran
on CINECA’s high-performance clusters due to the opportunities granted by an Italian Supercom-
puting Resource Allocation (ISCRA) project.
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2p 2 4 6 8 10 12 14 16 18 20

#S(2p) 1 0 2 9 39 400 5.255 95.870 1.994.962 45.654.630

# C(2p) 1 0 0 1 0 0 1.109 4.511 44.803 47.623.129

# C̃(2p) 0 0 0 0 0 0 0 1 0 0

Table 1

Note that the unique rigid dipole-free crystallization of C(2) (resp. of C(8)) is the
standard crystallization of S4 (resp. CP2: see [36]), while the unique non-bipartite
rigid dipole-free crystallization appearing up to 20 vertices is the standard one of RP4

with 16 vertices ([37]).

In order to face the problem of classification of the PL-manifolds appearing in
catalogues of crystallizations, in [20] it is described a heuristic procedure based on
combinatorial moves on graphs which do not change (“up to handles”) the represented
manifold and preserve the properties of rigidity and absence of dipoles.

We point out that all concepts and results involved in the procedure hold in each
dimension n ≥ 3; therefore the whole classifying algorithm is introduced in [20] for
general PL n-manifolds. Nevertheless, for sake of simplicity, in the present survey
paper we will describe it only in the 4-dimensional setting.

Let us call admissible any sequence of combinatorial moves which transforms a
rigid dipole-free crystallization of a PL 4-manifold M , into a rigid dipole-free crystal-
lization of a PL 4-manifold M ′ such that M ∼=PL M

′#h(S1 ⊗ S3) (h ≥ 0).
Moreover, for any rigid dipole-free crystallization Γ of M and any admissible

sequence ε, let θε(Γ) denote the (rigid dipole-free) crystallization of M ′ obtained by
applying the admissible sequence ε to Γ.

Given a list X of rigid dipole-free crystallizations and a set S of admissible se-
quences, it is then possible to subdivide X into equivalence classes with regard to S
by defining the class of Γ ∈ X with respect to S as:

clS(Γ) = {Γ′ ∈ X / ∃ε, ε′ ∈ S, θε(Γ) and θε′(Γ
′) have the same code}

Therefore, given Γ,Γ′ ∈ X, if clS(Γ) = clS(Γ′), then there exist h, k ∈ N ∪ {0}
such that |K(Γ)| ∼=PL M#h(S1 ⊗ S3) and |K(Γ′)| ∼=PL M#k(S1 ⊗ S3).

Obviously, no choice of S can ensure “a priori” that the above equivalence classes
coincide, even up to handles, with the PL-equivalence classes of the represented 4-
manifolds.

However, [20] shows the existence of a suitable set of admissible moves on 5-
coloured graphs which are sufficient to classify all PL 4-manifolds admitting a crys-
tallization with at most 18 vertices, in full analogy with what already proved in
dimension three, where a similar set has been detected, yielding the classification of
all 3-manifolds admitting a crystallization with at most 30 vertices.
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It is well-known that insertion or elimination of a dipole (dipole move) preserves
the PL structure of the represented manifold in any dimension (see [30] for details).

Figure 1: dipole move

Furthermore, a combinatorial move called ρ-pair switching, which is shown in
Figure 4.2, allows to eliminate ρ-pairs.

       e f
ρ-pair switching

Figure 2: ρ-pair switching

The effect of ρ-pair switching on crystallizations is explained by the following
result:

Proposition 4.4 [5] Let Γ be a crystallization of a PL 4-manifold M and let Γ′ be
obtained by switching a ρ-pair (e, f) in Γ. Suppose that e and f share h ≥ 3 bicoloured
cycles of Γ. Then:

(a) if h = 3, Γ′ is a gem of M , too;

(b) if h = 4, Γ′ is a gem of a PL 4-manifold M ′ such that M ∼=PL M
′#(S1 ⊗ S3).

Unfortunately, some moves which turned out to be powerful for the classification
of 3-manifolds are not available in dimension greater than three. Therefore, the
algorithm described in [20] makes use of other moves which were introduced by Lins
and Mulazzani in [42].

Let Γ be a gem of a PL 4-manifold M.
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• A blob move is the insertion or cancellation of a 4-dipole.

• A t-flip is the switching of a pair (e, f) of equally coloured edges which are both
incident to an h-dipole (1 ≤ h ≤ 3). An s-flip is the inverse move, i.e. the
switching of a pair (e, f) of equally coloured edges where either e or f belongs
to an h-dipole, which becomes an (h−1)-dipole after the transformation. A flip
is either an s- or a t-flip.

Figure 3: blob move

Figure 4: flip move

Flip and blob moves on a gem do not change the represented manifold as proved
in [42, Proposition 3].

On the other hand, we point out that, even if two crystallizations are known
to represent the same manifold, there is no algorithmic procedure to determine a
sequence of blob and flip moves connecting them, nor an upper bound to the number
of moves to be performed.

In order to define the set of admissible moves S̄ which have been chosen for the
heuristic procedure, let us introduce some definitions and notations.

Given an order 2p 5-coloured graph Γ there is a natural ordering of its vertices
induced by the rooted numbering algorithm generating its code (see [24]); so V (Γ) =
{v1, . . . , v2p} may be assumed.

If Γ is a rigid dipole-free crystallization of a PL 4-manifold, given i ∈ N2p =
{1, . . . , 2p}, c ∈ ∆4, a 4-tuple x = (x1, . . . , x4) with xi ∈ N2p and a permutation τ
of ĉ = ∆4−{c}, we denote by θi,c,x,τ (Γ) the rigid dipole-free crystallization obtained
from Γ in the following way:

- insert a 4-dipole (= blob) over the c-coloured edge incident with vi;

- for each k ∈ ĉ, consider, if exists, the s-flip on the pair of τ(k)-coloured edges
(e, f), where e belongs to the blob and f is incident to vxk

; then perform the
sequence of all possible s-flips of this type for increasing values of k;
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- cancel dipoles and switch ρ-pairs in the resulting graph.

θi,c,x,τ obviously defines an admissible sequence.

Finally, S̄ is defined as the set of all sequences θi,c,x,τ , where i ∈ N2p, c ∈ ∆4, x
is a 4-tuple of elements of N2p and τ is a permutation of ĉ.

Remark 2 As already mentioned, the above moves, as well as the classification al-
gorithm itself, are independent from dimension. As a consequence, the set S̄ can be
defined and the partition into equivalence classes with respect to S̄ can be performed
on any list of crystallizations of n-manifolds, in order to prove their PL-equivalence.
See [20] (or Subsection 6.1) for examples of application of the above algorithm.

4.3. Classification results in PL category

In order to obtain PL classification results, the classification algorithm, with respect
to the above defined set S̄, has been implemented in a C++ program - called “Γ4-
class” and it has been applied to the catalogues C(2p) and C̃(2p) with p ≤ 9 and to the
subset of C(20) consisting of crystallizations representing manifolds with β2 ≤ 2.

The application of Γ4-class to the catalogue
⋃

1≤p≤9 C(2p) yielded the complete PL
classification of the involved crystallizations as shown in the following proposition.

Proposition 4.5 [20] There is a bijective correspondence between the set of equiva-

lence classes of
⋃

1≤p≤9

(
C(2p) ∪ C̃(2p)

)
with respect to S̄ and the set of the represented

PL 4-manifolds. Moreover, all PL 4-manifolds in the above catalogues are topologi-
cally distinct.

By the above result and [20, Proposition 15], it has been obtained the PL classi-
fication of all orientable (resp. non-orientable) 4-manifolds with gem-complexity at
most 8 (resp. at most 9), which is summarized in the following theorem. Note that
the last statement appears in the present survey in a stronger form than the original
result in [20]: in fact, only recently program Γ4-class succeeded to prove that no PL
4-manifold M with k(M) = 9 has β2(M) ≤ 2 (i.e. all 20 vertices crystallizations with
β2(M) ≤ 2 belongs to the same class of a crystallization with few vertices).

Theorem 4.6 Let M be a PL 4-manifold. Then:

• k(M) = 0 ⇐⇒ M is PL-homeomorphic to S4;

• k(M) = 3 ⇐⇒ M is PL-homeomorphic to CP2;

• k(M) = 4 ⇐⇒ M is PL-homeomorphic to either S1 × S3 or S1 ×̃S3;

• k(M) = 6 ⇐⇒ M is PL-homeomorphic to either S2 × S2 or CP2#CP2 or
CP2#(−CP2);
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• k(M) = 7 ⇐⇒ M is PL-homeomorphic to either RP4 or CP2#(S1 × S3) or
CP2#(S1 ×̃ S3);

• k(M) = 8 ⇐⇒ M is PL-homeomorphic to either #2(S1 × S3) or #2(S1 ×̃S3).

Moreover:

• no PL 4-manifold M exists with k(M) ∈ {1, 2, 5};

• no exotic PL 4-manifold exists, with k(M) ≤ 8;

• any PL 4-manifold M with k(M) = 9 is simply connected with second Betti
number β2(M) = 3.

As a consequence of the (partial) analysis of the 4-dimensional crystallization cata-
logue

⋃
1≤p≤10 C(2p), together with a suitable application of the classification program

Γ4-class, in [20] it is also proved the existence of a rigid crystallization of S4, with
20 vertices and, apart from the standard order-two crystallization, it is the only rigid
dipole-free crystallization of S4 up to 20 vertices.

5. 4-manifolds admitting simple and semi-simple crystallizations

5.1. Simple and semi-simple crystallizations

The notion of simple crystallization of a (simply-connected) PL 4-manifold was in-
troduced in [7] and investigated in [21]; further, in [6], it was extended to the not
simply-connected case, by introducing the concept of semi-simple crystallization of a
PL 4-manifold.

Definition 3 A crystallization Γ of a PL 4-manifold M is called a semi-simple crys-
tallization of type m if the 1-skeleton of the associated coloured triangulation contains
exactly m+ 1 1-simplices for each pair of 0-simplices, where m is the rank of the fun-
damental group of M .

Semi-simple crystallizations of type 0 are called simple crystallizations: the 1-
skeleton of their associated coloured triangulation equals the 1-skeleton of a single
4-simplex.

Remark 3 In virtue of the bijection between 1-simplices of K(Γ) and residues of Γ
with three colours (see Section 2), the above definition may be re-stated in combina-
torial terms, for any crystallization Γ of a PL 4-manifold M with rk(π1(M)) = m :

Γ is a semi-simple crystallization ⇐⇒ gijk = m+ 1, ∀i, j, k ∈ ∆4.

In particular:

Γ is a simple crystallization ⇐⇒ gijk = 1, ∀i, j, k ∈ ∆4.
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As a direct consequence of the proof of Theorem 3.1 (inequality concerning gem-
complexity), a characterization of PL 4-manifolds admitting simple/semi-simple crys-
tallizations easily follows, involving the relation between the invariant gem-complexity
and the Euler characteristic.

Theorem 5.1 [21, 6] A PL 4-manifold M admits semi-simple crystallizations of
type m if and only if k(M) = 3χ(M)+10m−6, where m is the rank of the fundamental
group of M .
In particular: A simply-connected PL 4-manifold M admits simple crystallizations if
and only if k(M) = 3χ(M)− 6.

In [21] (resp. in [6]) simple (resp. semi-simple) crystallizations are proved to
be “minimal” both with respect to the invariant gem-complexity and with respect
to the invariant regular genus. Here, we present the generalized result concerning
semi-simple crystallizations, which contextually yields a lot of details about their
combinatorial structure.

Theorem 5.2 [6] Let M be a PL 4-manifold with rk(π1(M)) = m. If M admits
semi-simple crystallizations, then:

k(M) = 3χ(M) + 10m− 6;

G(M) = 2χ(M) + 5m− 4;

k(M) =
3G(M) + 5m

2
.

Moreover, for any semi-simple crystallization Γ of M ,

• ρε(Γ) = G(M) = 2χ(M) + 5m− 4 for any cyclic permutation ε of ∆4;

• #V (Γ) = 2(k(M) + 1) = 6χ(M) + 20m− 10;

• gi,j = χ(M) + 4m− 1 for any pair i, j ∈ ∆4;

• ρε(Γî) = G(M)−m
2 = χ(M) + 2m − 2 for any cyclic permutation ε of ∆4 and

for any color i ∈ ∆4.

In the simply-connected case, the characterization of PL 4-manifolds admitting
simple crystallizations via gem-complexity may be performed with respect to the
second Betti number, as proved for the first time in [21, Theorem 1.1].

Theorem 5.3 [21] Let M be a simply-connected PL 4-manifold. Then:

M admits a simple crystallization iff k(M) = 3β2(M).

Moreover, if M admits simple crystallizations, then G(M) = 2β2(M).
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Remark 4 It is not difficult to prove that, if π1(M) is assumed to be trivial, then
equality G(M) = 2β2(M) implies the existence of a crystallization Γ of M and a
permutation ε of ∆4 so that ρε(Γ) = 2β2(M) and gεiεi+2εi+3

= 1 ∀i ∈ ∆4. However,
in general, this does not imply that Γ is simple, since at least one gεiεi+1εi+2 > 1
may occur. For example, the analysis of the catalogue of rigid dipole-free order 16
crystallizations shows that all of them satisfy relation G(M) = 2β2(M), while grst = 2
for exactly one triple {r, s, t} ⊂ ∆4 and gijk = 1 ∀{i, j, k} 6= {r, s, t}.

Let us conclude the subsection by pointing out that, in the particular case of a
simple crystallization, any associated handle-decomposition (see Subsection 4.1) turns
out to be a so-called special handle decomposition, i.e. a handle-decomposition lacking
in 1-handles and 3-handles (see [43, Section 3.3]). Hence, PL 4-manifolds admitting
simple crystallizations may be identified by a (not dotted) framed link.12

Proposition 5.4 [21] Let M be a (simply-connected) PL 4-manifold admitting sim-
ple crystallizations. Then, M admits a special handle-decomposition.

In fact, with the same notations used in Subsection 4.1, we can notice that, if Γ is a
simple crystallization, then for any partition {{i, j, k}, {r, s}} of ∆4 the decomposition
M = N(i, j, k) ∪φ N(r, s) is of “standard” type: K(r, s) consists of exactly one 1-
simplex, while K(i, j, k) consists of grs 2-simplices, all having the same boundary.

Hence, N(r, s) ∼=PL D4 = H(4) trivially follows, while N(i, j, k) = H(0) ∪ (H
(2)
1 ∪

· · · ∪ H(2)
grs−1) holds, where H(0) = D4 is a “small” regular neighbourhood of one

(arbitrarily fixed) 2-simplex of K(i, j, k) and the 2-handles are represented by the
regular neighbourhoods of the remaining 2-simplices of K(i, j, k).

Remark 5 Note that the existence of a special handlebody decomposition is related
to Kirby problem n. 50: “Does every simply-connected closed 4-manifold have a
handlebody decomposition without 1-handles? Without 1- and 3-handles?”.

5.2. Computing regular genus and gem-complexity for a huge class of
PL 4-manifolds

The definition of graph connected sum (see Section 2) implies that the class of PL
4-manifolds admitting simple/semi-simple crystallization is closed under connected
sum.

Proposition 5.5 [7] Let M and M ′ be two PL 4-manifolds admitting semi-simple
crystallizations. Then, M#M ′ admits semi-simple crystallizations, too.
In particular, if both M and M ′ admit simple crystallizations, then M#M ′ admits
simple crystallizations, too.

12See [15] for relationships between crystallization theory and dotted framed link representation
for PL 4-manifolds.
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It is easy to check that the well-known minimal (order 10) crystallizations of
S1×S3 and S1×̃S3, as well as the minimal (order 16) crystallization of RP4, are semi-
simple crystallizations of type 1, while the minimal (order 2) crystallization of S4,
the minimal (order 8) crystallization of CP2, the minimal (order 14) crystallization
of S2 × S2 are simple crystallizations. Moreover, in [7] a simple crystallization of the
K3-surface is produced.

As a consequence, in virtue of the additivity of semi-simple crystallizations (Propo-
sition 5.5), we have that all simply-connected PL 4-manifolds of “standard type” (see
[7]) admit semi-simple crystallizations, as well as all PL 4-manifolds involved in the
existing crystallization catalogues (see [20], or Section 4).

Proposition 5.6 [7] Each PL 4-manifold with gem-complexity less than nine admits
semi-simple crystallizations.

By direct analysis of the existing 4-dimensional crystallization catalogues (see [20]
or Section 4), we can compute how many simple/semi-simple crystallizations exist,
for some significant PL 4-manifolds.

Proposition 5.7

• S4 and CP2 admit a unique simple crystallization;

• S1×S3, S1 ×̃S3 and RP4 admit a unique semi-simple crystallization (of type
1);

• S2 × S2 admits exactly 267 simple crystallizations;

• CP2#CP2 admits exactly 583 simple crystallizations;

• CP2#(−CP2) admits exactly 258 simple crystallizations.

From Theorem 5.2 and Proposition 5.5 it is easy to deduce the additivity of both
the invariants regular genus and gem-complexity under connected sum, within the
class of PL 4-manifolds admitting semi-simple crystallizations (in particular: simple
crystallizations).

Theorem 5.8 [21, 7] Let M and M ′ be two PL 4-manifolds admitting semi-simple
crystallizations. Then:

k(M#M ′) = k(M) + k(M ′) and G(M#M ′) = G(M) + G(M ′).

As a consequence, we obtain the computation of both invariants for a huge class
of PL 4-manifolds.
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Proposition 5.9 Let

M∼=PL(#pCP2)#(#p′(−CP2))#(#q(S2× S2))#(#r(S1⊗ S3))#(#sRP4)#(#tK3),

with p, p′, q, r, s, t ≥ 0. Then,

k(M) = 3(p+p′+2q+22t)+4r+7s and G(M) = 2(p+p′+2q+22t)+r+3s.

5.3. Classification via regular genus of PL 4-manifolds admitting
simple/semi-simple crystallizations

In the particular case of PL 4-manifolds admitting semi-simple crystallizations, some
classification results via regular genus may be added to the general ones summarized
in Subsection 4.1. The first one concerns the case of the first Betti number equal to
one.

Proposition 5.10 [7] Let M be an orientable PL 4-manifold with π1(M) = ∗mZ
and β2(M) = 1. If M admits semi-simple crystallizations, then M is PL-homeomorphic
to #m(S1 × S3)#CP2.

Moreover, the relation between regular genus and gem-complexity for PL 4-manifolds
admitting semi-simple crystallizations yields new results regarding the PL classi-
fication up to regular genus four, within the class of PL 4-manifolds admitting a
semi-simple crystallization. As already pointed out in Subsection 4.1, only the case
G(M) = 4 and rk(π1(M)) = 2, with not free fundamental group, remains open.

Proposition 5.11 Let M be a PL 4-manifold with rk(π1(M)) = m which admits
semi-simple crystallizations. Then:

(a) if G(M) = 3 and m = 1, then M is PL-homeomorphic to one of the following
PL 4-manifolds: CP2#(S1 × S3), CP2#(S1×̃S3), RP4;

(b) if G(M) = 3 and m = 3, then M is PL-homeomorphic to #3(S1 ⊗ S3);

(c) if G(M) = 4 and m = 0 , then M is PL-homeomorphic to one of the following
PL 4-manifolds: CP2#CP2, S2 × S2, CP2#(−CP2);

(d) if G(M) = 4, m = 2 and the fundamental group of M is free, then M is PL-
homeomorphic to CP2#2(S1 ⊗ S3).

Moreover, if G(M) = 3 (resp. G(M) = 4), the cases m ∈ {0, 2} (resp. m ∈ {1, 3})
cannot appear for PL 4-manifolds admitting semi-simple crystallizations.

219



M. R. Casali, P. Cristofori, C. Gagliardi Classifying PL 4-manifolds via crystallizations

Proof. First of all, note that, by Remark 1, only statements (a) and (c) require
the hypothesis about semi-simple crystallizations, and have to be proved.

By Theorem 5.2, if M is a PL 4-manifold admitting semi-simple crystallizations,

relation k(M) = 3G(M)+5m
2 holds. Then: in case (a) k(M) = 7 follows, while in

case (c) k(M) = 6 follows. Hence, statements (a) and (c) are consequence of the
PL classification of all the (orientable and non-orientable) PL 4-manifolds up to gem-
complexity 8, obtained in [20] via analysis of the related crystallization catalogues
(see Theorem 4.6).

Moreover, the relation k(M) = 3G(M)+5m
2 easily implies that the cases G(M) = 3

(resp. G(M) = 4) and m ∈ {0, 2}, (resp. m ∈ {1, 3}) are impossible, if M admits
semi-simple crystallizations. �

General conditions excluding the existence of semi-simple crystallizations are also
obtained from their combinatorial properties (Theorem 5.2).

Proposition 5.12 [7] No PL 4-manifold M with G(M) − rk(π1(M)) odd admits
semi-simple crystallizations.
In particular: no simply-connected PL 4-manifold M with odd regular genus admits
simple crystallizations.

6. Toward further developments

6.1. Different PL structures on the same TOP 4-manifold, and related
problems

As it is well-known, up to now there is no classification of smooth structures on any
given smoothable topological 4-manifold; on the other hand, finding non-diffeomorphic
smooth structures on the same closed simply-connected topological manifold has long
been an interesting problem.

Our hope is that further advances in the generation and classification of crystal-
lization catalogues for PL 4-manifolds according to gem-complexity (see the algorithm
described in [20, Section 3] and briefly summarized in Subsection 4.2) could produce
examples of non-equivalent PL structures on the same TOP 4-manifold.

For example, the characterization of PL 4-manifolds admitting semi-simple crys-
tallizations by means of gem-complexity (Theorem 5.1) has the following consequence
about possible different PL structures on the same TOP 4-manifold.

Proposition 6.1 Let M and M ′ be two PL 4-manifolds, with M ∼=TOP M ′ and
M �PL M ′. If both M and M ′ admit semi-simple crystallization, then k(M) = k(M ′).

Remark 6 In particular, in the simply-connected case, the catalogue of all rigid
dipole-free crystallizations of PL 4-manifolds up to a fixed gem-complexity k must
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contain all simple crystallizations of PL 4-manifolds whose second Betti number does
not exceed k

3 . Hence, the existing catalogue up to gem-complexity 9 ([20]) presents
all simple crystallizations of PL 4-manifolds M with β2(M) ≤ 3.

On the other hand, in [1], infinitely many PL 4-manifolds TOP-homeomorphic
but not PL-homeomorphic to CP2#2(−CP2) are proved to exist. Hence, if at least
one among them admits simple crystallizations, they have to appear in the catalogue
of order 20 crystallizations, whose analysis is currently underway.

More generally, the existence of simple/semi-simple crystallizations may be related
with known results and open problems about exotic structures on “standard” simply-
connected PL 4-manifolds and on non-orientable PL 4-manifolds (see for example [1],
[2] and [10]), by taking into account also the (obvious) finiteness property of gem-
complexity. Items (a), (d), (e) of the following proposition are due to [20, 21], while
items (b) and (c) are new.

Proposition 6.2

(a) Let M be S4 or CP2 or S2 × S2 or CP2#CP2 or CP2#(−CP2); if an exotic
PL structure on M exists, then the corresponding PL-manifold does not admit
simple crystallizations.

(b) Let M̄ be a PL 4-manifold TOP-homeomorphic but not PL-homeomorphic to
RP4; then, M̄ does not admit semi-simple crystallizations.

(c) Let M be S1 ⊗ S3 or CP2#(S1 ⊗ S3) or #2(S1 ⊗ S3); if an exotic PL structure
on M exists, then the corresponding PL-manifold does not admit semi-simple
crystallizations.

(d) Let M̄ be a PL 4-manifold TOP-homeomorphic but not PL-homeomorphic to
CP2#2(−CP2); then, either M̄ does not admit simple crystallizations, or M̄
admits an order 20 simple crystallization.

(e) Let r ∈ {3, 5, 7, 9, 11, 13} ∪ {r = 4n− 1 / n ≥ 4} ∪ {r = 4n− 2 / n ≥ 23}; then,
infinitely many simply-connected PL 4-manifolds with β2 = r do not admit
simple crystallizations.

As pointed out by [7, Corollary 8.3], the existence of pairs of simply-connected
“standard” PL 4-manifolds which are TOP-homeomorphic but not PL-homeomorphic
has a consequence involving simple crystallizations, too.

Proposition 6.3 [7] A pair of simple crystallizations Γ, Γ′ exists, such that

|K(Γ)| ∼=TOP |K(Γ′)| but |K(Γ)| �PL |K(Γ′)|.
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In fact, by Kronheimer and Mrowka (see [40]), it is known thatK3#(−CP2) ∼=TOP

#3(CP2)#20(−CP2) but K3#(−CP2) �PL #3(CP2)#20(−CP2). Hence, to obtain
a pair of simple crystallizations proving the above statement, it is sufficient to make
graph connected sums of suitable copies of the (known) simple crystallizations of K3
and CP2 (see Subsection 5.2).

Remark 7 If Γ′ and Γ′′ is a pair of simple crystallizations of M ′ and M ′′ respectively,
with M ′ ∼=TOP M

′′ and M ′ �PL M ′′ (for example, the pair obtained via Kronheimer
and Mrowka’s result), then the associated contracted pseudo-triangulations K ′ =
K(Γ′) and K ′′ = K(Γ′′) are such that N ′(1, 3) = N ′′(1, 3) = D4, while N ′(0, 2, 4)
and N ′′(0, 2, 4) both consist of β2(M ′) = β2(M ′′) triangles with the same boundary
(see Proposition 5.4). Hence, the same handle-decomposition is induced, and also
with the same intersection form. However, the fact that M ′ �PL M ′′ proves that,
if β2(M ′) = β2(M ′′) ≥ 2, it is not possible to identify the framed link associated
to the 2-handles, despite what happens when β2(M ′) = β2(M ′′) = 1 by means of
Gordon-Luecke’s result.

Now, the semi-simple case of Proposition 6.1, together with results by [6], enables
to extend Proposition 6.3 to the non-simply-connected case.

Proposition 6.4 A pair of semi-simple crystallizations (of type m ≥ 1) Γ, Γ′ exists,
such that

|K(Γ)| ∼=TOP |K(Γ′)| but |K(Γ)| �PL |K(Γ′)|.

Proof. By Kreck (see [39]), it is known that RP4#K3 ∼=TOP RP4#11(S2× S2)
but RP4#K3 �PL RP4#11(S2 × S2). Hence, to obtain a pair of semi-simple crys-
tallizations (of type 1) proving the above statement, it is sufficient to make graph
connected sums of the (unique) semi-simple crystallization of RP4 and either a sim-
ple crystallization of K3 or eleven copies of a simple crystallization of S2 × S2 (see
Subsection 5.2). �

Moreover, we point out that the program Γ4-class, performing automatic recog-
nition of PL-homeomorphic 4-manifolds, could be an useful tool to approach open
problems related to different triangulations of the same TOP 4-manifold, which are
conjectured to represent the same PL 4-manifold.

For example, it is in progress its application to the open problem concerning the
possible PL-equivalence of the 16- and 17-vertices triangulations of the K3-surface
obtained in [26] and [46] respectively.

Note that similar attempts to settle the conjecture are described in [7], [8] and
[9]. However, the elementary moves involved in those procedures (namely, edge-
contraction and/or bistellar moves) are different from those used by our program
(i.e. flips, blobs, ρ-pair switchings and dipole eliminations). Hence, it is possible that
one sequence succeeds when the others fail, or viceversa, with equal computational
time employed.
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6.2. Additivity of regular genus and related problems

It is easy to check that the relation G(M#M ′) ≤ G(M) + G(M ′) can be stated for
all PL n-manifolds by direct estimation of G(M#M ′) on the gem Γ#Γ′, when Γ,
Γ′ are assumed to be gems of M,M ′ realizing the regular genus of the represented
n-manifolds. Moreover, the additivity of regular genus under connected sum has
been conjectured13, and the associated (open) problem is significant, at least in the
orientable case, and especially in dimension four.

Conjecture 1 [31] Let Mn
1 , M

n
2 be two closed (orientable) PL n-manifolds. Then,

G(Mn
1 #Mn

2 ) = G(Mn
1 ) + G(Mn

2 ).

In fact, it is easy to prove that the 4-dimensional case of Conjecture 1 implies
the 4-dimensional Smooth Poincaré Conjecture, via the well-known Wall Theorem on
homotopic 4-manifolds:

if Σ4 is a homotopy sphere, then Σ4#(#h(S2×S2)) ∼= S4#(#h(S2×S2)) ∼= #h(S2×
S2), for a suitable non-negative integer h, and hence G(Σ4#(#h(S2×S2))) = G(#h(S2×
S2)). Thus, the additivity of the regular genus would yield G(Σ4) = 0, i.e. Σ4 ∼= S4

(by Proposition 5.1, in case n = 4).

The following statement improves via Theorem 3.1 a double inequality concerning
regular genus obtained in [38, Corollary 6.5].

Proposition 6.5 For each closed PL 4-manifold M , with rk(π1(M)) = m:

2− 2G(M) ≤ χ(M) ≤ 2 +
G(M)

2
− 5m

2
.

In [38, Corollary 6.8], by means of the double inequality of [38, Corollary 6.5], two
classes of (not necessarily orientable) PL 4-manifolds have been detected, for which
additivity of regular genus holds. Now, by means of the improvement of Proposition
6.5, we can strictly enlarge the set of PL 4-manifolds for which additivity of regular
genus is known to hold.

Proposition 6.6 Let M1,M2 be two PL 4-manifolds, with rk(π1(Mi)) = mi for
each i ∈ {1, 2}.

(a) If G(Mi) = 1− χ(Mi)
2 for each i ∈ {1, 2}, then:

G(M1#M2) = G(M1) + G(M2) and G(M1#M2) = 1− χ(M1#M2)

2
.

13Obviously, regular genus satisfies the additive property with respect to connected sum of closed
3-manifolds, via a classical result on Heegaard genus.
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(b) If G(Mi) = 2χ(Mi) + 5mi − 4 for each i ∈ {1, 2}, then:

G(M1#M2) = G(M1)+G(M2) and G(M1#M2) = 2χ(M1#M2)+5(m1+m2)−4.

As pointed out in [21], the class of PL 4-manifolds involved in Proposition 6.6(a)
consists of connected sums of S3-bundles over S1 : in fact, by the combinatorial prop-

erties of crystallizations in dimension 4, relation G(M) = 1− χ(M)
2 implies ρε(Γî) = 0

for each i ∈ ∆4, and M ∼=PL #m(S1 ⊗ S3) directly follows from the existence of (at
least) an i ∈ ∆4 such that ρε(Γî) = 0 (see [25] for details).

On the other hand, Theorem 5.2 easily proves that the class of PL 4-manifolds
involved in Proposition 6.6(b) includes all PL 4-manifolds admitting semi-simple crys-
tallizations.

It is an open problem to completely determine this second class of PL 4-manifolds
for which additivity of regular genus holds.
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