## CATALOGUES OF PL-MANIFOLDS AND COMPLEXITY ESTIMATIONS VIA CRYSTALLIZATION THEORY

#### Maria Rita Casali Università di Modena e Reggio Emilia (Italy) casali@unimore.it

Workshop "TRIANGULATIONS" - Oberwolfach - May 4, 2012

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY

### Coloured triangulations and coloured graphs

A coloured triangulation of a compact PL *n*-manifold  $M^n$  is a pair  $(\bar{K}, \xi)$ , where  $\bar{K}$  is a pseudocomplex<sup>1</sup> triangulating  $M^n$  and  $\xi : S_0(\bar{K}) \to \Delta_n = \{0, 1, \dots, n\}$  (vertex-labelling) satisfies:

- i) each *n*-simplex of  $\bar{K}$  has exactly one *c*-labelled vertex, for every  $c \in \Delta_n$ ;
- ii) each *n*-labelled vertex is internal in  $\bar{K}$ .

**EXAMPLE:** If  $M^n = |K|$ , then  $(K', \xi)$  is a coloured triangulation, where

K' first barycentric subdivision of K $\xi(v) = r$  iff v barycenter of  $\tau^r \in K$ 

A coloured triangulation  $\overline{K}$  of  $M^n$  is combinatorially visualized by means of an (n+1)-coloured graph  $(\Gamma, \gamma)$ :

- $\Gamma = (V(\Gamma), E(\Gamma))$  is the 1-skeleton of the dual cellular complex of  $\bar{K}$ ;
- $\gamma: E(\Gamma) \to \Delta_n$  (edge-coloration) is defined by:  $\gamma(e) = c$  if  $e \in E(\Gamma)$  is dual to an (n-1)-simplex of  $\overline{K}$  having no *c*-labelled vertex.

Г







Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY

 $(\Gamma, \gamma)$  is said to *represent*  $M^n$ , since the reversed process allows to completely reconstruct the coloured triangulation  $\overline{K} = K(\Gamma)$  - and hence  $M^n = |K(\Gamma)|$  - from it:

- 1) take an *n*-simplex  $\sigma(x)$  for every vertex  $x \in V(\Gamma)$ , and label its vertices by  $\Delta_n$ ;
- 2) if  $x, y \in V(\Gamma)$  are joined by a *c*-coloured edge, identify the (n-1)-faces of  $\sigma(x)$  and  $\sigma(y)$  opposite to *c*-labelled vertices, so that equally labelled vertices coincide.

 $(\Gamma, \gamma)$  is also said to be a *gem* ("graph <u>encoded manifold</u>") of  $M^n$ .



<ロ> <同> <同> < 回> < 回>

5 DQC

### CONSEQUENCES:

- If M<sup>n</sup> is a closed manifold, any (n + 1)-coloured graph representing it is a regular graph of degree n + 1;
   If ∂M<sup>n</sup> ≠ Ø, any (n + 1)-coloured graph representing M<sup>n</sup> has a subset of vertices (boundary vertices) of degree n, lacking in n-coloured edges and corresponding to boundary n-simplices of K(Γ).
- $M^n = |K(\Gamma)|$  is orientable iff  $\Gamma$  is bipartite; " non-orientable " " " non-bipartite.
- ∀B ⊂ Δ<sub>n</sub>, with #B = h, there is a bijection between (n − h)-simplices of K(Γ) whose vertices are labelled by Δ<sub>n</sub> − {B} and connected components of h-coloured graph Γ<sub>B</sub> = (V(Γ), γ<sup>-1</sup>(B)).

A crystallization of an *n*-manifold  $M^n$  is any (n + 1)-coloured graph  $(\Gamma, \gamma)$  representing it, so that  $K(\Gamma)$  has the <u>minimal</u> number of vertices.

If  $\partial M^n$  is either empty or connected, that minimal number is always equal to n + 1:

 $(\Gamma, \gamma)$  is a crystallization of  $M^n = |K(\Gamma)|$  if and only if  $\Gamma_{\hat{c}}$  is connected,  $\forall c \in \Delta_n$ (or, equivalently, if and only if  $K(\Gamma)$  has exactly one c-labelled vertex,  $\forall c \in \Delta_n$ )

Pezzana Existence Theorem (1974)

Each PL *n*-manifold  $M^n$  (with or without boundary) admits a crystallization.



 $\mathbb{S}^3$ 

<ロ> <同> <同> < 回> < 回>

E 996



 $\mathbb{S}^1\times\mathbb{S}^2$ 

<ロ> <同> <同> < 回> < 回>

э.



 $\mathbb{CP}^2$ 

A complete (finite) set of graph-moves allows to translate the (PL)-homeomorphism problem for *n*-manifolds into an equivalence problem for (n + 1)-coloured graphs:

two coloured graphs represent the same PL-manifold if and only if they can be obtained one each other by a finite sequence of dipole moves.

An *h-dipole*  $(1 \le h \le n)$  of  $(\Gamma, \gamma)$  is a subgraph  $\Theta = \{v, w\}$  consisting of two vertices  $v, w \in V(\Gamma)$  joined by *h* edges coloured by  $j_1, j_2, \ldots, j_h \in \Delta_n$ , such that:

- v and w belong to different components,  $\Xi_1$  and  $\Xi_2$  say, of  $\Gamma_{\Delta_n \{j_1, \dots, j_h\}} = (V(\Gamma), \gamma^{-1}(\Delta_n \{j_1, \dots, j_h\}));$
- if either v or w is an internal vertex, then either  $\Xi_1$  or  $\Xi_2$  is a regular graph of degree n + 1 h.

Cataloguing PL-manifolds via crystallization theory Complexity estimations



dipole move

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY

(日) (同) (三) (三)

2

### 2. Cataloguing PL-manifolds via crystallization theory

Each order 2p (n + 1)-coloured graph  $(\Gamma, \gamma)$  (with  $V(\Gamma) = \{v_1, \dots, v_{2p}\}$ ) may be obviously encoded by an "incidence matrix"

$$A_{\Gamma}: \mathbb{N}_{2p} \times \mathbb{N}_{n+1} \rightarrow \{0, 1, \ldots, 2p\},\$$

$$A_{\Gamma}(i,c) = \begin{cases} j & \text{if } v_i \text{ is } c\text{-adjacent to } v_j \\ 0 & \text{if } v_i \text{ has no } c\text{-adjacent vertex} \end{cases}$$



The standard crystallization of  $\mathbb{S}^2\times\mathbb{S}^1$ 

|          | colour 0 | colour 1 | colour 2 | colour 3 |
|----------|----------|----------|----------|----------|
| vertex a | A        | С        | A        | D        |
| vertex A | а        | b        | а        | d        |
| vertex b | В        | A        | С        | C        |
| vertex B | b        | с        | d        | с        |
| vertex c | С        | В        | D        | В        |
| vertex C | с        | а        | b        | b        |
| vertex d | D        | D        | В        | A        |
| vertex D | d        | d        | С        | а        |

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY

æ

3

If we consider a manifold with boundary, zero elements appear, corresponding to boundary vertices of the graph.



A crystallization of  $\mathbb{S}^1\times\mathbb{D}^2$ 

|          | colour 0 | colour 1 | colour 2 | colour 3 |
|----------|----------|----------|----------|----------|
| vertex a | D        | C        | A        | 0        |
| vertex A | d        | b        | а        | 0        |
| vertex b | С        | A        | С        | В        |
| vertex B | с        | с        | d        | b        |
| vertex c | В        | В        | D        | 0        |
| vertex C | b        | а        | b        | 0        |
| vertex d | A        | D        | В        | 0        |
| vertex D | а        | d        | с        | 0        |

э

The incidence matrix  $A_{\Gamma}$  is not the "most economical" way to identify  $(\Gamma, \gamma)$  (for example,  $A(i, c) = j \iff A(j, c) = i$ ).

Moreover:

- if Γ is bipartite (i.e. it represents an orientable *n*-manifold), information about only one bipartition class is sufficient, for each colour c ∈ Δ<sub>n</sub>;
- if Γ is non-bipartite (i.e. it represents a non-orientable *n*-manifold), for each colour c ∈ Δ<sub>n-1</sub> information about only one bipartition class is sufficient, while adjacencies by colour n have to be completely described.

Finally, by suitably labelling the vertices of the  $\Gamma,$  adjacencies by colour 0 may always be understood.



The standard crystallization of  $\mathbb{S}^2\times\mathbb{S}^1$ 

|          | colour 0 | colour 1 | colour 2 | colour 3 |
|----------|----------|----------|----------|----------|
| vertex a |          | С        | A        | D        |
| vertex A |          |          |          |          |
| vertex b |          | A        | С        | C        |
| vertex B |          |          |          |          |
| vertex c |          | В        | D        | В        |
| vertex C |          |          |          |          |
| vertex d |          | D        | В        | A        |
| vertex D |          |          |          |          |

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY

æ

The notion of CODE:

- for each vertex r ∈ V(Γ) and for every permutation ε of Δ<sub>n</sub> = {0,1,...,n}, algorithmically and canonically label V(Γ) (so that the associated incidence matrix Ā<sup>(r,ε)</sup><sub>Γ</sub> contains "essential" elements in well-defined positions);
- if  $c_{r,\varepsilon}$  is the numerical string containing in orderly way the essential elements of  $\bar{A}_{\Gamma}^{(r,\varepsilon)}$ , the *code code*( $\Gamma$ ) is the lexicographic maximum among all strings  $c_{r,\varepsilon}$ :

$$code(\Gamma) = max \left\{ \begin{array}{l} r \in V(\Gamma) \\ \varepsilon \ permutation \ of \ \Delta_n \end{array} \right\}$$



The standard crystallization of  $\mathbb{S}^2\times\mathbb{S}^1$ 

|          | $\varepsilon_0 = 0$ | $\varepsilon_1 = 1$ | $\varepsilon_2 = 3$ | $\varepsilon_3 = 2$ |
|----------|---------------------|---------------------|---------------------|---------------------|
| vertex a |                     | С                   | D                   | A                   |
| vertex A |                     |                     |                     |                     |
| vertex b |                     | А                   | С                   | C                   |
| vertex B |                     |                     |                     |                     |
| vertex c |                     | В                   | В                   | D                   |
| vertex C |                     |                     |                     |                     |
| vertex d |                     | D                   | А                   | В                   |
| vertex D |                     |                     |                     |                     |

#### $code(\Gamma) = CABD \ DCBA \ ACDB$

э

□ > 《注》《注》



The standard crystallization of  $\mathbb{S}^2 \, \widetilde{\times} \, \mathbb{S}^1$ 

|             | $\varepsilon_0 = 0$ | $arepsilon_1=1$ | $\varepsilon_2 = 3$ | $\varepsilon_3 = 2$ |
|-------------|---------------------|-----------------|---------------------|---------------------|
| vertex a    |                     | С               | D                   | A                   |
| vertex A    |                     |                 |                     | а                   |
| vertex b    |                     | A               | С                   | С                   |
| vertex B    |                     |                 |                     | D'                  |
| vertex c    |                     | В               | В                   | d′                  |
| vertex C    |                     |                 |                     | b                   |
| vertex d'=D |                     | D               | A                   | с                   |
| vertex D'=d |                     |                 |                     | В                   |

$$code(\Gamma) = CABD \ DCBA \ ACdc \ aDbB$$

æ

(1日) (1日) (1日)

The notion of code allows to detect *colour-isomorphic* graphs, i.e. graphs isomorphic up to permutation of the vertex set AND up to permutation of the colour set:

#### Theorem [C.-Gagliardi 2001]

 $(\Gamma, \gamma)$  and  $(\Gamma', \gamma')$  are colour-isomorphic if and only if

 $code(\Gamma) = code(\Gamma').$ 

The notion of code is very useful in order to produce automatic catalogues of PL *n*-manifolds via crystallizations.

In the CLOSED case, it is necessary:

- to proceed inductively on dimension *n*;
- to perform sphere-recognition at every step

   (an (n + 1)-coloured graph (Γ, γ) represents an n-manifold if and
   only if Γ<sub>c</sub> represents the (n − 1)-sphere S<sup>n−1</sup>, ∀c ∈ Δ<sub>n</sub>).

Advantages in dimension n = 3:

- (Γ, γ) is a crystallization of a 3-manifold M<sup>3</sup> iff:
   i) Γ<sub>ĉ</sub> is connected, ∀c ∈ Δ<sub>3</sub>;
  - ii)  $g_{01} + g_{02} + g_{03} = 2 + p$ ;
  - iii)  $\forall \epsilon = (\epsilon_0, \epsilon_1, \epsilon_2, \epsilon_3), \ g_{\epsilon_0 \epsilon_1} = g_{\epsilon_2 \epsilon_3}.$
- all closed connected 3-manifolds may be represented by *rigid crystallizations*.

The generating algorithm was implemented in C++ programs starting from  $\mathcal{S}^{(2p)}$  with  $1 \leq p \leq 15$ ; the output data are presented in the following table according to the number of vertices.

| 2р                      | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24  | 26   | 28   | 30    |
|-------------------------|---|---|---|---|----|----|----|----|----|----|----|-----|------|------|-------|
| $\# \mathcal{C}^{(2p)}$ | 1 | 0 | 0 | 1 | 0  | 1  | 1  | 3  | 4  | 23 | 44 | 262 | 1252 | 7760 | 56912 |
| $\# \tilde{C}^{(2p)}$   | 0 | 0 | 0 | 0 | 0  | 0  | 1  | 1  | 1  | 9  | 12 | 88  | 480  | 2790 | 21804 |

Table: rigid crystallizations up to 30 vertices

### **CLASSIFICATION ALGORITHM**

After the generation process, suitable moves on gems, translating the PL-homeomorphism of the represented manifolds, are applied to develop a classification procedure which allows to detect crystallizations of the same manifold:

- dipole moves;
- generalized dipole moves (defined only for n = 3);
- switching of ρ-pairs (preserving the homeomorphism class, up to connected sum with handles).

The "admissible moves" are used to subdivide a given list of rigid crystallizations into equivalence classes, so that:

$$cl(\Gamma) = cl(\Gamma') \implies |K(\Gamma)| = |K(\Gamma')|$$

Remark: Note that we have no theoretical proof that

$$|K(\Gamma)| = |K(\Gamma')| \implies cl(\Gamma) = cl(\Gamma').$$

Nevertheless, by experimental results, the above implication is true for all elements of the catalogues  $C^{(2p)}$ ,  $\tilde{C}^{(2p)}$  (with  $1 \le p \le 15$ ), with respect to a suitably chosen set  $\bar{S}$  of admissible moves.

In dimension 3 the above automatic partition into equivalence classes succeeds to distinguish topologically all manifolds represented by the generated catalogues:<sup>2</sup>

#### Proposition [C.-Cristofori 2008]

There exists a one-to-one correspondence between the set of classes of  $\boldsymbol{C}^{(30)}$  (resp.  $\tilde{\boldsymbol{C}}^{(30)}$ ) produced by the classification program and the set of orientable (resp. non-orientable) 3-manifolds admitting a coloured triangulation with at most 30 tetrahedra.

<sup>&</sup>lt;sup>2</sup>For each positive integer p, we denote by  $C^{(2p)}$  (resp.  $\tilde{C}^{(2p)}$ ) the catalogue of all rigid bipartite (resp. non bipartite) crystallizations of order  $\leq 2p$  arising from the generating algorithm.

#### Proposition [C.-Cristofori 2008]

There are exactly 110 closed prime orientable 3-manifolds, having a coloured triangulation with at most 30 tetrahedra. They are:

- fifty-five elliptic 3-manifolds;
- thirty-nine non-elliptic Seifert 3-manifolds (in particular, two torus bundles with Nil geometry);
- four torus bundles with Sol geometry;
- two manifolds of type (K<sup>2</sup> × I) ∪ (K<sup>2</sup> × I)/A (A ∈ GL(2; Z), det(A) = -1), with Sol geometry;
- seven non-geometric graph manifolds;
- three hyperbolic Dehn-fillings (of the complement of link  $6_1^3$ ).

The details both about the implementation of the classification algorithm (performed by the C++ program  $\Gamma$ -class) and about the obtained results, are available at the WEB page

http://cdm.unimo.it/home/matematica/casali.mariarita/CATALOGUES.htm

i.

The distribution of prime manifolds in  $C^{(30)}$  with respect to *Matveev complexity* and *geometry*:

| complexity                     | 1   | 2   | 3   | 4     | 5     | 6     | 7      | 8      | 9      | 10     |
|--------------------------------|-----|-----|-----|-------|-------|-------|--------|--------|--------|--------|
| lens                           | 2/2 | 3/3 | 6/6 | 10/10 | 0/20  | 0/36  | 0/72   | 0/136  | 0/272  | 0/528  |
| other elliptic                 | -   | 1/1 | 1/1 | 4/4   | 11/11 | 14/25 | 0/45   | 0/78   | 0/142  | 0/270  |
| $\mathbb{E}^3$                 | -   | -   | -   | -     | -     | 6/6   | -      | -      | -      | -      |
| Nil                            | -   | -   | -   | -     | -     | 7/7   | 3/10   | 2/14   | 0/15   | 0/15   |
| $\mathbb{H}^2\times\mathbb{R}$ | -   | -   | -   | -     | -     | -     | -      | 0/2    | -      | 0/8    |
| $\widetilde{SL}_2(\mathbb{R})$ | -   | -   | -   | -     | -     | -     | 13/39  | 5/162  | 2/513  | 0/1416 |
| Sol                            | -   | -   | -   | -     | -     | -     | 4/5    | 2/9    | 0/23   | 0/39   |
| non-geometric                  | -   | -   | -   | -     | -     | -     | 4/4    | 1/35   | 2/185  | 0/777  |
| hyperbolic                     | -   | -   | -   | -     | -     | -     | -      | -      | 2/4    | 1/25   |
| TOTAL                          | 2/2 | 4/4 | 7/7 | 14/14 | 11/31 | 27/74 | 24/175 | 10/436 | 6/1154 | 1/3078 |

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY

3 x 3

#### Proposition [C. 1999] - [Bandieri-Cristofori-Gagliardi 2009]

There are exactly sixteen closed prime non-orientable 3-manifolds, having a coloured triangulation with at most 30 tetrahedra. They are:

- the 3-manifolds  $\mathbb{S}^1 \widetilde{\times} \mathbb{S}^2$  and  $\mathbb{RP}^2 \times \mathbb{S}^1$ , with  $\mathbb{S}^2 \times \mathbb{R}$  geometry;
- the four non-orientable euclidean 3-manifolds;
- the torus bundles  $TB\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$ ,  $TB\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ ,  $TB\begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$  and  $TB\begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}$ , with Sol geometry;
- the Seifert fibered spaces  $(\mathbb{RP}^2; (2, 1), (3, 1)), (\overline{D}; (2, 1), (3, 1)), (T^2/o_2; (2, 1)), (K^2; (2, 1)) and (K^2/n_3; (2, 1)), with <math>\mathbb{H}^2 \times \mathbb{R}$  geometry;
- the non-geometric graph manifold

$$(\mathbb{A};(2,1))\cup(\mathbb{A};(2,1))/\begin{pmatrix}0&-1\\1&0\end{pmatrix}.$$

The distribution of prime manifolds in  $\tilde{\textbf{C}}^{(30)}$  with respect to Matveev complexity and geometry:

| complexity                     | 0   | 1   | 2 | 3 | 4 | 5 | 6   | 7   | 8    | 9    |
|--------------------------------|-----|-----|---|---|---|---|-----|-----|------|------|
| $\mathbb{S}^2	imes \mathbb{R}$ | 1/1 | 1/1 | - | - | - | - | -   | -   | -    | -    |
| $\mathbb{E}^3$                 | -   | -   | - | - | - | - | 4/4 | -   | -    | -    |
| $\mathbb{H}^2	imes\mathbb{R}$  | -   | -   | - | - | - | - | -   | 2/2 | 0/8  | 3/25 |
| Sol                            | -   | -   | - | - | - | - | 1/1 | 1/1 | 2/2  | 0/2  |
| non-geometric                  | -   | -   | - | - | - | - | -   | -   | -    | 1/6  |
| TOTAL                          | 1/1 | 1/1 | 0 | 0 | 0 | 0 | 5/5 | 3/3 | 2/10 | 4/33 |

э

Two ideas for improving the generation process:

- Simplify the considered catalogues, by means of additional conditions on the representing objects (for example by considering only **rigid cluster-less crystallizations**, which represent ALL 3-manifolds).
- Improve the implementation by making use of a refined **parallel** version of the generating algorithm.

#### **Preliminary problem**

In dimension 4, the generation of crystallization catalogues implies the previous generation of all gems (not necessarily crystallizations!) representing 3-dimensional spheres up to a fixed order.

For the first segment of the catalogue, the recognition of gems representing  $\mathbb{S}^3$  is easily faced and solved by dipole eliminations, since:

no rigid crystallization of S<sup>3</sup> exists (different from the "trivial" one, with order two) with less than 24 vertices.

#### The generation choice

In order to avoid the explosion of data, in dimension 4 a great attention must be paid to the choice of the representing set.

#### Proposition [Bandieri-Gagliardi 2011]

Each closed connected PL 4-manifold M admits a *rigid* crystallization. Moreover, if M is handle-free, it admits a rigid crystallization of minimal order.

#### As a consequence:

- the catalogue of crystallizations representing closed 4-manifolds may be restricted to **rigid crystallizations lacking in** 2-**dipoles**;
- the catalogue of (non-contracted) gems representing S<sup>3</sup> and lacking in ρ<sub>3</sub>-pairs may be considered as input data of the 4-dimensional generating process.

#### The first output of the generating program:

| 2р                                 | 2 | 4 | 6 | 8 | 10 | 12  | 14   | 16    | 18      | 20       |
|------------------------------------|---|---|---|---|----|-----|------|-------|---------|----------|
| Γ <sub>4</sub> (S³)                | 1 | 0 | 0 | 9 | 39 | 400 | 5255 | 95870 | 1994952 | 45654630 |
| $\Gamma(M^4)$ lacking in 2-dipoles | 1 | 0 | 0 | 1 | 0  | 0   | 1109 | 4512  | 44803   | 47623129 |

Table: number of gems of  $\mathbb{S}^3$  lacking in  $\rho_3$ -pairs and number of rigid crystallizations of 4-manifolds lacking in 2-dipoles, according to vertex number

**Remark**: A 4-dimensional crystallization catalogue - where classification is performed up to PL-homeomorphism - might provide examples of different PL 4-manifolds belonging to the same TOP-homeomorphism class.

The *gem-complexity* of a closed *n*-manifold  $M^n$  is the non-negative integer  $k(M^n) = p - 1$ , 2p being the minimum order of a crystallization of  $M^n$ .

Crystallization theory easily implies:

 $k(M^4) \geq 3\beta_2(M^4)$ for each simply connected closed 4-manifold  $M^4$ .

Relation  $k(M^4) \ge 3\beta_2(M^4)$ , combined with the up-to-date topological classification of simply connected PL 4-manifolds allows to prove:

#### Proposition (to appear)

If  $M^4$  is a simply connected closed PL 4-manifold with  $k(M^4) \le 65$ , then  $M^4$  is TOP-homeomorphic to either

$$(\#_r \mathbb{CP}^2) \# (\#_{r'} - \mathbb{CP}^2)$$
 with  $r + r' = \beta_2(M^4)$ 

or

$$\#_s(\mathbb{S}^2 \times \mathbb{S}^2)$$
 with  $s = \frac{1}{2}\beta_2(M^4)$ 

In fact, the important results by

- [Freedman, *The topology of four-dimensional manifolds*, J. Differential Geom. 17 (1982), 357-453]
- [Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), 279-315]
- [Furuta, Monopole equation and the  $\frac{11}{8}$  conjecture, Math. Res. Lett. 8 (2001), 279-291]

ensure that only intersection forms of type

$$r[1] \oplus r'[-1]$$
 or  $s \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 

are allowed if  $k(M^4) \leq 65$ , since forms of type

$$\pm 2nE_8 \oplus s \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

are proved to represent a PL 4-manifold only if s > 2n (and hence, only PL 4-manifolds with  $\beta_2 \ge 22$  occur in this case).

# RESULTS BY THE FIRST SEGMENT OF 4-DIMENSIONAL CATALOGUES:

#### Proposition (to appear)

- S<sup>4</sup> is the only closed connected (PL) 4-manifold with gem-complexity 0.
- No closed connected (PL) 4-manifold  $M^4$  exists with  $1 \le k(M^4) \le 2$ .
- The complex projective plane  $\mathbb{CP}^2$  is the only closed connected (PL) 4-manifold with  $k(M^4) = 3$ .
- k(S<sup>1</sup> × S<sup>3</sup>) = k(S<sup>1</sup>×S<sup>3</sup>) = 4; moreover, no closed connected handle-free (PL) 4-manifold M<sup>4</sup> exists with k(M<sup>4</sup>) = 4.
- No closed connected (PL) 4-manifold  $M^4$  exists with  $k(M^4) = 5$ .

# RESULTS BY 4-DIMENSIONAL CATALOGUES (UP TO 18 VERTICES): THE NON-ORIENTABLE CASE

#### Proposition (to appear)

- No closed connected handle-free non-orientable (PL) 4-manifold M<sup>4</sup> exists with k(M<sup>4</sup>) ≤ 6.
- The real projective space ℝP<sup>4</sup> is the only closed connected prime non-orientable (PL) 4-manifold M<sup>4</sup> with k(M<sup>4</sup>) = 7.
- No closed connected handle-free non-orientable (PL) 4-manifold M<sup>4</sup> exists with 8 ≤ k(M<sup>4</sup>) ≤ 9.

## RESULTS BY THE 4-DIMENSIONAL CATALOGUES (FROM 14 TO 18 VERTICES): THE ORIENTABLE CASE

#### Proposition (to appear)

- $k(\mathbb{S}^2 \times \mathbb{S}^2) = 6$ ; moreover,  $k(\mathbb{CP}^2 \# \mathbb{CP}^2) = k(\mathbb{CP}^2 \# (-\mathbb{CP}^2)) = 6$ , too.
- If  $M^4$  is a closed connected handle-free orientable (PL) 4-manifold with  $6 \le k(M^4) \le 9$ , ) then  $M^4$  is simply-connected and TOP-homeomorphic to either  $\mathbb{S}^2 \times \mathbb{S}^2$  or  $\mathbb{CP}^2 \#\mathbb{CP}^2$  or  $\mathbb{CP}^2 \#(-\mathbb{CP}^2)$ .

### 3. Complexity estimations

By making use of the strong connection existing in dimension 3 between gems and Heegaard diagrams, a 3-manifold invariant based on crystallization theory - called *GM-complexity* - has been introduced and proved to be an upper bound for the Matveev complexity of each compact 3-manifold.

- M.R. C., Computing Matveev's complexity of non-orientable 3-manifolds via crystallization theory, Topology Appl. 144 (2004), 201-209.
- M.R. C., Estimating Matveev's complexity via crystallization theory, Discrete Math. 307 (2007), 704-714.
- M.R. C. P. Cristofori, Computing Matveev's complexity via crystallization theory: the orientable case, Acta Appl. Math. 92 (2006), 113-123.
- M.R. C. P. Cristofori M. Mulazzani, Complexity computation for compact 3-manifolds via crystallizations and Heegaard diagrams, Topology and its Applications (2012), to appear.
- M.R. C. P. Cristofori, Computing Matveev's complexity via crystallization theory: the boundary case, preprint 2012.

4 A N 4 B N 4 B N

### 3. Estimating Matveev complexity via Heegaard diagrams

If  $\mathcal{H} = (S, v, w)$  is a Heegaard diagram of M, then a special spine of M exists, whose true vertices are the intersection points of the curves of the two systems v and w, with the exception of those lying on the boundary of a region of  $S - \{v \cup w\}$ .

Hence:

 $c(M) \leq n - m$ ,

where n = number of intersection points between v and w and m = number of intersection points contained in  $\overline{R}$ .



- $H_{\alpha}$  = the largest 2-dimensional subcomplex of  $K'(\Gamma)$  not intersecting the barycentric subdivisions of  $K_{\alpha 3}$  e  $K_{\beta\beta'}$ .

• 
$$F_{\alpha} = |H_{\alpha}|.$$

The surface  $F_{\alpha}$  splits  $K(\Gamma)$  into two polyhedra  $\mathcal{A}_{\alpha,3}$  and  $\mathcal{A}_{\alpha',\beta'}$ , whose intersection is exactly  $F_{\alpha}$ :

- $\mathcal{A}_{\alpha 3} \searrow \mathcal{K}_{\alpha 3}$  (resp.  $\mathcal{A}_{\beta \beta'} \searrow \mathcal{K}_{\beta \beta'}$ )  $\Longrightarrow$  is an handlebody.
- $\mathcal{A}_{\alpha 3} \cap \mathcal{A}_{\beta \beta'} = \partial \mathcal{A}_{\alpha 3} \cap \partial \mathcal{A}_{\beta \beta'} = F_{\alpha}.$
- If  $\Gamma$  is a crystallization, let D be a  $\{\beta, \beta'\}$ -coloured cycle and D' a  $\{\alpha, 3\}$ -coloured cycle.

 $(F_{\alpha}, \Gamma_{\beta\beta'} \setminus D, \Gamma_{\alpha3} \setminus D')$  is a Heegaard diagram of M.

### Example: Poincarè homology sphere



Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY

э

### **GM**-complexity

#### GM-complexity of a crystallization

$$c_{GM}(\Gamma) = min\{\#V(\Gamma) - \#(V(D) \cup V(D') \cup V(\Xi)) / \alpha \in \Delta_3, \\ D \in \Gamma_{\beta\beta'}, \ D' \in \Gamma_{\alpha3}, \ \Xi \in \mathcal{R}_{\alpha}(D, D')\}$$

#### GM-complexity of a closed 3-manifold

 $c_{GM}(M) = min\{c_{GM}(\Gamma) \mid \Gamma \text{ crystallization of } M\}$ 

э

∃ ▶ ∢

#### Remark:

The computation of  $c_{GM}(\Gamma)$  is only based on the combinatorial structure of the edge-coloured graph  $\Gamma$ ; hence, it may be determined in an algorithmic way (*GM-COMPLEXITY program*).

For details, see:

http://cdm.unimo.it/home/matematica/casali.mariarita/about\_cgm.htm

By making use of this program, an estimation of c(M) has been obtained for all manifolds involved in existing crystallization catalogues.

#### Conjecture

For every closed connected 3-manifold M,

$$c(M) = c_{GM}(M).$$

### GM-complexity: non-contracted case

#### GM-complexity of a gem

$$c_{GM}(\Gamma) = \min\{\#V(\Gamma) - \#(V(\mathcal{D}) \cup V(\mathcal{D}') \cup V(\Xi)) / \\ \alpha \in \Delta_2, \\ \mathcal{D} \text{ set of } \{\beta, \beta'\} - \text{ cycles dual to a maximal tree of } K_{\alpha 3}, \\ \mathcal{D}' \text{ set of } \{\alpha, 3\} - \text{ cycles dual to a maximal tree of } K_{\beta \beta'}, \\ \Xi \in \mathcal{R}_{\alpha}(\mathcal{D}, \mathcal{D}')\}$$

э

## Complexity estimations [C. 2007]

The notion of *GM*-complexity, combined with the widely investigated relationships between crystallization theory and other representation methods for 3-manifolds, has allowed to obtain direct estimations of the Matveev complexity for several classes of manifolds, significantly improving former results.

**Proposition.** Let  $M_2(L)$  be the (unique) 2-fold covering of  $\mathbb{S}^3$  branched on link L and let  $\overline{L}$  be a p-bridge projection of L with k crossing points  $(k \ge p \ge 2)$ . If  $\overline{L}$  admits a bridge  $\overline{\beta}$  with order  $m_b$  and an independent arc  $\overline{\alpha}$  with relative order  $m_a$  (i.e. an arc not consecutive to  $\overline{\beta}$  and containing  $m_a \ge 0$  crossing points not belonging to  $\overline{\beta}$ ), then

$$c(M_2(L)) \leq 2(k + p - m_b - m_a - 3) \leq 4k - 8.$$



[M. Ferri, *Crystallisations of 2-fold branched coverings of*  $\mathbb{S}^3$ , Proc. Amer. Math. Soc. **73** (1979), 271-276.]

э

∃ → < ∃ →</p>

\_\_\_\_ ▶

### Complexity estimations [C. 2007]

**Proposition.** Let  $M^3(K, \omega)$  be the 3-fold simple covering of  $\mathbb{S}^3$  branched on knot K with monodromy  $\omega$  and let  $(\bar{K}, \omega)$  be a 3-coloured diagram of knot K associated to the pair  $(K, \omega)$ , with k crossing points and an order m arc. Then

$$c(M^{3}(K,\omega)) \leq 2k - 2(m+2).$$



[M.R. C., Coloured knots and coloured graphs representing 3-fold simple coverings of  $S^3$ , Discrete Math. **137** (1995), 87-98.]

э

- 4 回 ト - 4 回 ト

## Complexity estimations [C. 2007]

**Proposition.** Let  $M^3(L, d)$  be the 3-manifold obtained by Dehn surgery on the framed link (L, d) and let  $\overline{L}$  be a planar (connected) diagram of Lwith  $l \ge 1$  components and k crossing points. If  $\overline{L}$  admits a region of order m whose boundary involves components  $L_{j_1}, \ldots, L_{j_s}$   $(1 \le s \le l)$  of L, then

$$c(M^{3}(L,d)) \leq 6k + 2t - 4l - 2(m-1) - \sum_{p=1,...,s} t_{j_{p}},$$

where  $t = \sum_{i=1,\ldots,l} t_i$  and  $t_i = |d_i - w(\overline{L}_i)|, \forall i = 1,\ldots,l$ .



[M.R. C., From framed links to crystallizations of bounded 4-manifolds, J. Knot Theory Ramifications **9** (2000), 443-458.]

A B > A B >

\_\_\_\_ ▶

3

### case $\partial M \neq \emptyset$



- $\partial \mathcal{A}_{\alpha 3} \cap \partial \mathcal{A}_{\beta \beta'} = F_{\alpha}$
- $\partial \mathcal{A}_{\alpha 3} \cap \partial M = \bigcup_{i=1}^{r} \mathbb{D}_{i}$
- $\partial \mathbb{D}_i = lk(v_i, (\partial K)')$   $v_i \quad \alpha - labelled vertex of <math>\partial K$  $\bigcup_{i=1}^r \partial \mathbb{D}_i = \partial F_{\alpha}$

• 
$$S_{\alpha} = F_{\alpha} \cup (\bigcup_{i=1}^{r} \mathbb{D}_{i})$$

• 
$$C = S_{\alpha} \times [-1, +1]$$
 collar of  
 $S_{\alpha}$  in  $\mathcal{A}_{\alpha 3}$   
 $C^{-} = S_{\alpha} \times [-1, 0]$   
 $C^{+} = S_{\alpha} \times [0, +1]$   
 $C_{i} = S_{\alpha} \times \{i\}$ 

$$X_{\alpha} = \overline{\mathcal{A}_{\alpha 3} \setminus C^{-}}$$
$$Y_{\alpha} = \mathcal{A}_{\beta \beta'} \cup C^{-}$$

э

- X<sub>α</sub> is an handlebody obtained from C<sup>+</sup> by attaching 2-handles to C<sub>1</sub> along the {β, β'}-coloured cycles of Γ (dual to the edges of K<sub>α3</sub>).
- $Y_{\alpha}$  is a compression body<sup>3</sup>, obtained from  $C^-$  by attaching 2-handles to  $C_{-1}$  along the  $\{\alpha, 3\}$ -coloured cycles of  $\Gamma$  (dual to edges of  $\mathcal{K}_{\beta\beta'}$  not belonging to  $\partial \mathcal{K}$ ).

 $(S_{\alpha}, X_{\alpha}, Y_{\alpha})$  is a (generalized) Heegaard splitting of M.

<sup>&</sup>lt;sup>3</sup>A compression body is a 3-manifold with boundary obtained from a  $F \times I$  (F surface) by attaching 2-handles and 3-handles to  $F \times \{1\}$ .  $\Box \mapsto \langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle$ 

### GM-complexity of a gem with boundary

- (a)  $\mathcal{D} = \text{set of } \{\beta, \beta'\}$  coloured cycles dual to a maximal tree of  $K_{\alpha 3}$ .
- (b)  $G_{\beta\beta'}$  = graph obtained from  $K_{\beta\beta'}$  by contracting to one point  $p_i$  (for each i = 1, ..., r) the vertices of  $K_{\beta\beta'}$  belonging to the *i*-th component of  $\partial K$ .
- (c)  $\mathcal{D}' = \text{set of } \{\alpha, 3\}$ -coloured cycles dual to the edges of a subgraph  $\overline{G}$  of  $G_{\beta\beta'}$  such that  $\overline{G}$  is a union of trees containing all vertices of  $G_{\beta\beta'}$  and,  $\forall i, j, i \neq j$ , the vertices  $p_i$  and  $p_j$  belong to different connected components of  $\overline{G}$ .

#### GM-complexity of a gem with boundary

$$c_{GM}(\Gamma) = \min\{\#V(\Gamma) - \#(V(\mathcal{D}) \cup V(\mathcal{D}') \cup V(\Xi)) / \\ \alpha \in \Delta_2, \\ \mathcal{D}, \mathcal{D}' \text{ satisfying (a) and (c)} \\ \Xi \in \mathcal{R}_{\alpha}(\mathcal{D}, \mathcal{D}')\}$$

### GM-complexity of a 3-manifold with boundary

*GM-complexity of a 3-manifold with boundary* 

 $c_{GM}(M) = \min\{c_{GM}(\Gamma) \mid \Gamma \text{ gem of } M\}$ 

By definition itself:

Proposition [C.-Cristofori 2012]

For each compact 3-manifold M,

 $c(M) \leq c_{GM}(M)$ 

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY

WORK IN PROGRESS: estimations via *c*<sub>GM</sub> (boundary case)

By making use of the notion of *GM-complexity* for 3-manifolds with boundary, we hope to obtain - via graph theoretical construction of the associated gems - improvements for existing estimations of Matveev complexity for some interesting classes of bounded 3-manifolds.

The first efforts will take into considerations

knot (or link) complements.