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Coloured triangulations and coloured graphs

A coloured triangulation of a compact PL n-manifold Mn is a pair (K̄ , ξ),
where K̄ is a pseudocomplex1 triangulating Mn and
ξ : S0(K̄ ) → ∆n = {0, 1, . . . , n} (vertex-labelling) satisfies:

i) each n-simplex of K̄ has exactly one c-labelled vertex, for every
c ∈ ∆n;

ii) each n-labelled vertex is internal in K̄ .

EXAMPLE: If Mn = |K |, then (K ′, ξ) is a coloured triangulation, where

K ′ first barycentric subdivision of K

ξ(v) = r iff v barycenter of τ r ∈ K

1This means that its “simplices” may intersect in more than one face.
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A coloured triangulation K̄ of Mn is combinatorially visualized by means
of an (n+1)-coloured graph (Γ, γ):

Γ = (V (Γ),E (Γ)) is the 1-skeleton of the dual cellular complex of
K̄ ;

γ : E (Γ) → ∆n (edge-coloration) is defined by: γ(e) = c if
e ∈ E (Γ) is dual to an (n − 1)-simplex of K̄ having no c-labelled
vertex.
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(Γ, γ) is said to represent Mn, since the reversed process allows to
completely reconstruct the coloured triangulation K̄ = K (Γ) - and hence
Mn = |K (Γ)| - from it:

1) take an n-simplex σ(x) for every vertex x ∈ V (Γ), and label its
vertices by ∆n;

2) if x , y ∈ V (Γ) are joined by a c-coloured edge, identify the
(n − 1)-faces of σ(x) and σ(y) opposite to c-labelled vertices, so
that equally labelled vertices coincide.

(Γ, γ) is also said to be a gem (“graph encoded manifold”) of Mn.
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CONSEQUENCES:

If Mn is a closed manifold, any (n + 1)-coloured graph representing
it is a regular graph of degree n + 1;
If ∂Mn 6= ∅, any (n + 1)-coloured graph representing Mn has a
subset of vertices (boundary vertices) of degree n, lacking in
n-coloured edges and corresponding to boundary n-simplices of
K (Γ).

Mn = |K (Γ)| is orientable iff Γ is bipartite;
” ” non-orientable ” ” ” non-bipartite.

∀B ⊂ ∆n, with #B = h, there is a bijection between
(n − h)-simplices of K (Γ) whose vertices are labelled by ∆n − {B}
and connected components of h-coloured graph ΓB = (V (Γ),
γ−1(B)).
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A crystallization of an n-manifold Mn is any (n + 1)-coloured graph
(Γ, γ) representing it, so that K (Γ) has the minimal number of vertices.

If ∂Mn is either empty or connected, that minimal number is always
equal to n + 1:

(Γ, γ) is a crystallization of Mn = |K (Γ)| if and only if Γĉ is
connected, ∀c ∈ ∆n

(or, equivalently, if and only if K (Γ) has exactly one c-labelled
vertex, ∀c ∈ ∆n)

Pezzana Existence Theorem (1974)

Each PL n-manifold Mn (with or without boundary) admits a
crystallization.

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY



Basic crystallization theory
Cataloguing PL-manifolds via crystallization theory

Complexity estimations

S3
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S1 × S2
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CP2
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A complete (finite) set of graph-moves allows to translate the
(PL)-homeomorphism problem for n-manifolds into an equivalence
problem for (n + 1)-coloured graphs:

two coloured graphs represent the same PL-manifold if and only if they
can be obtained one each other by a finite sequence of dipole moves.

An h-dipole (1 ≤ h ≤ n) of (Γ, γ) is a subgraph Θ = {v ,w} consisting
of two vertices v ,w ∈ V (Γ) joined by h edges coloured by
j1, j2, . . . , jh ∈ ∆n, such that:

v and w belong to different components, Ξ1 and Ξ2 say, of
Γ∆n−{j1,...,jh} = (V (Γ), γ−1(∆n − {j1, . . . , jh}));

if either v or w is an internal vertex, then either Ξ1 or Ξ2 is a
regular graph of degree n + 1− h.
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dipole move
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2. Cataloguing PL-manifolds via crystallization theory

Each order 2p (n + 1)-coloured graph (Γ, γ) (with V (Γ) = {v1, . . . , v2p})
may be obviously encoded by an “incidence matrix”

AΓ : N2p × Nn+1 → {0, 1, . . . , 2p},

AΓ(i , c) =

{
j if vi is c-adjacent to vj

0 if vi has no c-adjacent vertex
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The standard crystallization of S2 × S1

colour 0 colour 1 colour 2 colour 3
vertex a A C A D
vertex A a b a d
vertex b B A C C
vertex B b c d c
vertex c C B D B
vertex C c a b b
vertex d D D B A
vertex D d d c a
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If we consider a manifold with boundary, zero elements appear, corresponding to
boundary vertices of the graph.

A crystallization of S1 × D
2

colour 0 colour 1 colour 2 colour 3
vertex a D C A 0
vertex A d b a 0
vertex b C A C B
vertex B c c d b
vertex c B B D 0
vertex C b a b 0
vertex d A D B 0
vertex D a d c 0
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The incidence matrix AΓ is not the “most economical” way to identify
(Γ, γ) (for example, A(i , c) = j ⇔ A(j , c) = i).

Moreover:

if Γ is bipartite (i.e. it represents an orientable n-manifold),
information about only one bipartition class is sufficient, for each
colour c ∈ ∆n;

if Γ is non-bipartite (i.e. it represents a non-orientable n-manifold),
for each colour c ∈ ∆n−1 information about only one bipartition
class is sufficient, while adjacencies by colour n have to be
completely described.

Finally, by suitably labelling the vertices of the Γ, adjacencies by colour 0
may always be understood.

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY



Basic crystallization theory
Cataloguing PL-manifolds via crystallization theory

Complexity estimations

The standard crystallization of S2 × S1

colour 0 colour 1 colour 2 colour 3
vertex a C A D
vertex A
vertex b A C C
vertex B
vertex c B D B
vertex C
vertex d D B A
vertex D
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The notion of CODE :

for each vertex r ∈ V (Γ) and for every permutation ε of
∆n = {0, 1, . . . , n}, algorithmically and canonically label V (Γ)

(so that the associated incidence matrix Ā
(r ,ε)
Γ contains “essential”

elements in well-defined positions);

if cr ,ε is the numerical string containing in orderly way the essential

elements of Ā
(r ,ε)
Γ , the code code(Γ) is the lexicographic maximum

among all strings cr ,ε:

code(Γ) = max

{
cr ,ε /

r ∈ V (Γ)

ε permutation of ∆n

}
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The standard crystallization of S2 × S
1

ε0 = 0 ε1 = 1 ε2 = 3 ε3 = 2
vertex a C D A
vertex A
vertex b A C C
vertex B
vertex c B B D
vertex C
vertex d D A B
vertex D

code(Γ) = CABD DCBA ACDB
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The standard crystallization of S2×̃S
1

ε0 = 0 ε1 = 1 ε2 = 3 ε3 = 2
vertex a C D A
vertex A a
vertex b A C C
vertex B D′

vertex c B B d′

vertex C b
vertex d′=D D A c
vertex D′=d B

code(Γ) = CABD DCBA ACdc aDbB
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The notion of code allows to detect colour-isomorphic graphs, i.e. graphs
isomorphic up to permutation of the vertex set AND up to permutation
of the colour set:

Theorem [C.-Gagliardi 2001]

(Γ, γ) and (Γ′, γ′) are colour-isomorphic if and only if

code(Γ) = code(Γ′).
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The notion of code is very useful in order to produce automatic
catalogues of PL n-manifolds via crystallizations.

In the CLOSED case, it is necessary:

to proceed inductively on dimension n;

to perform sphere-recognition at every step
(an (n + 1)-coloured graph (Γ, γ) represents an n-manifold if and
only if Γĉ represents the (n − 1)-sphere Sn−1, ∀c ∈ ∆n).

Advantages in dimension n = 3 :

- (Γ, γ) is a crystallization of a 3-manifold M3 iff:

i) Γĉ is connected, ∀c ∈ ∆3;
ii) g01 + g02 + g03 = 2 + p;
iii) ∀ǫ = (ǫ0, ǫ1, ǫ2, ǫ3), gǫ0ǫ1 = gǫ2ǫ3 .

- all closed connected 3-manifolds may be represented by rigid
crystallizations.
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The generating algorithm was implemented in C++ programs starting
from S(2p) with 1 ≤ p ≤ 15; the output data are presented in the
following table according to the number of vertices.

2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

#C(2p) 1 0 0 1 0 1 1 3 4 23 44 262 1252 7760 56912

#C̃(2p) 0 0 0 0 0 0 1 1 1 9 12 88 480 2790 21804

Table: rigid crystallizations up to 30 vertices

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY



Basic crystallization theory
Cataloguing PL-manifolds via crystallization theory

Complexity estimations

CLASSIFICATION ALGORITHM

After the generation process, suitable moves on gems, translating the
PL-homeomorphism of the represented manifolds, are applied to develop
a classification procedure which allows to detect crystallizations of the
same manifold:

dipole moves;

generalized dipole moves (defined only for n = 3);

switching of ρ-pairs (preserving the homeomorphism class, up to
connected sum with handles).
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The “admissible moves” are used to subdivide a given list of rigid
crystallizations into equivalence classes, so that:

cl(Γ) = cl(Γ′) =⇒ |K (Γ)| = |K (Γ′)|

Remark: Note that we have no theoretical proof that

|K (Γ)| = |K (Γ′)| =⇒ cl(Γ) = cl(Γ′).

Nevertheless, by experimental results, the above implication is true for all
elements of the catalogues C(2p), C̃(2p) (with 1 ≤ p ≤ 15), with respect
to a suitably chosen set S̄ of admissible moves.
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In dimension 3 the above automatic partition into equivalence classes
succeeds to distinguish topologically all manifolds represented by the
generated catalogues:2

Proposition [C.-Cristofori 2008]

There exists a one-to-one correspondence between the set of classes of

C(30) (resp. C̃
(30)

) produced by the classification program and the set of
orientable (resp. non-orientable) 3-manifolds admitting a coloured
triangulation with at most 30 tetrahedra.

2For each positive integer p, we denote by C(2p) (resp. C̃
(2p)

) the catalogue of all
rigid bipartite (resp. non bipartite) crystallizations of order ≤ 2p arising from the
generating algorithm.
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Proposition [C.-Cristofori 2008]

There are exactly 110 closed prime orientable 3-manifolds, having a
coloured triangulation with at most 30 tetrahedra.
They are:

fifty-five elliptic 3-manifolds;

thirty-nine non-elliptic Seifert 3-manifolds (in particular, two torus
bundles with Nil geometry);

four torus bundles with Sol geometry;

two manifolds of type (K 2
∼
× I ) ∪ (K 2

∼
× I )/A (A ∈ GL(2;Z),

det(A) = −1), with Sol geometry;

seven non-geometric graph manifolds;

three hyperbolic Dehn-fillings (of the complement of link 631).
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The details both about the implementation of the classification algorithm
(performed by the C++ program Γ-class) and about the obtained
results, are available at the WEB page

http://cdm.unimo.it/home/matematica/casali.mariarita/CATALOGUES.htm

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY



Basic crystallization theory
Cataloguing PL-manifolds via crystallization theory

Complexity estimations

The distribution of prime manifolds in C(30) with respect to Matveev
complexity and geometry:

complexity 1 2 3 4 5 6 7 8 9 10

lens 2/2 3/3 6/6 10/10 0/20 0/36 0/72 0/136 0/272 0/528

other elliptic - 1/1 1/1 4/4 11/11 14/25 0/45 0/78 0/142 0/270

E
3 - - - - - 6/6 - - - -

Nil - - - - - 7/7 3/10 2/14 0/15 0/15

H
2 × R - - - - - - - 0/2 - 0/8

S̃L2(R) - - - - - - 13/39 5/162 2/513 0/1416

Sol - - - - - - 4/5 2/9 0/23 0/39

non-geometric - - - - - - 4/4 1/35 2/185 0/777

hyperbolic - - - - - - - - 2/4 1/25

TOTAL 2/2 4/4 7/7 14/14 11/31 27/74 24/175 10/436 6/1154 1/3078
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Proposition [C. 1999] - [Bandieri-Cristofori-Gagliardi 2009]

There are exactly sixteen closed prime non-orientable 3-manifolds, having
a coloured triangulation with at most 30 tetrahedra. They are:

the 3-manifolds S1×̃S2 and RP2 × S1, with S2 × R geometry;

the four non-orientable euclidean 3-manifolds;

the torus bundles TB

(
0 1
1 −1

)
, TB

(
2 1
1 0

)
, TB

(
3 2
2 1

)
and

TB

(
3 1
1 0

)
, with Sol geometry;

the Seifert fibered spaces (RP2; (2, 1), (3, 1)), (D ; (2, 1), (3, 1)),
(T 2/o2; (2, 1)), (K

2; (2, 1)) and (K 2/n3; (2, 1)), with H2 × R

geometry;

the non-geometric graph manifold

(A; (2, 1)) ∪ (A; (2, 1))/

(
0 −1
1 0

)
.
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The distribution of prime manifolds in C̃
(30)

with respect to Matveev
complexity and geometry:

complexity 0 1 2 3 4 5 6 7 8 9

S2 × R 1/1 1/1 - - - - - - - -
E3 - - - - - - 4/4 - - -

H2 × R - - - - - - - 2/2 0/8 3/25
Sol - - - - - - 1/1 1/1 2/2 0/2

non-geometric - - - - - - - - - 1/6

TOTAL 1/1 1/1 0 0 0 0 5/5 3/3 2/10 4/33
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Two ideas for improving the generation process:

Simplify the considered catalogues, by means of additional conditions
on the representing objects (for example by considering only rigid
cluster-less crystallizations, which represent ALL 3-manifolds).

Improve the implementation by making use of a refined parallel
version of the generating algorithm.
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WORK IN PROGRESS: Toward 4-dimensional catalogues

Preliminary problem
In dimension 4, the generation of crystallization catalogues implies the
previous generation of all gems (not necessarily crystallizations!)
representing 3-dimensional spheres up to a fixed order.

For the first segment of the catalogue, the recognition of gems
representing S3 is easily faced and solved by dipole eliminations, since:

no rigid crystallization of S3 exists
(different from the “trivial” one, with order two)

with less than 24 vertices.
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WORK IN PROGRESS: Toward 4-dimensional catalogues

The generation choice
In order to avoid the explosion of data, in dimension 4 a great attention
must be paid to the choice of the representing set.

Proposition [Bandieri-Gagliardi 2011]

Each closed connected PL 4-manifold M admits a rigid crystallization.
Moreover, if M is handle-free, it admits a rigid crystallization of minimal
order.

As a consequence:

the catalogue of crystallizations representing closed 4-manifolds may
be restricted to rigid crystallizations lacking in 2-dipoles;

the catalogue of (non-contracted) gems representing S3 and lacking
in ρ3-pairs may be considered as input data of the 4-dimensional
generating process.

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY



Basic crystallization theory
Cataloguing PL-manifolds via crystallization theory

Complexity estimations

WORK IN PROGRESS: Toward 4-dimensional catalogues

The first output of the generating program:

2p 2 4 6 8 10 12 14 16 18 20

Γ4̂(S
3) 1 0 0 9 39 400 5255 95870 1994952 45654630

Γ(M4) lacking in 2-dipoles 1 0 0 1 0 0 1109 4512 44803 47623129

Table: number of gems of S3 lacking in ρ3-pairs
and number of rigid crystallizations of 4-manifolds lacking in 2-dipoles,

according to vertex number
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WORK IN PROGRESS: Toward 4-dimensional catalogues

Remark: A 4-dimensional crystallization catalogue - where classification
is performed up to PL-homeomorphism - might provide examples of
different PL 4-manifolds belonging to the same TOP-homeomorphism
class.

The gem-complexity of a closed n-manifold Mn is the non-negative
integer k(Mn) = p − 1, 2p being the minimum order of a crystallization
of Mn.

Crystallization theory easily implies:
k(M4) ≥ 3β2(M

4)
for each simply connected closed 4-manifold M4.
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WORK IN PROGRESS: Toward 4-dimensional catalogues

Relation k(M4) ≥ 3β2(M
4), combined with the up-to-date topological

classification of simply connected PL 4-manifolds allows to prove:

Proposition (to appear)

If M4 is a simply connected closed PL 4-manifold with k(M4) ≤ 65, then
M4 is TOP-homeomorphic to either

(#rCP
2)#(#r ′ − CP

2) with r + r ′ = β2(M
4)

or

#s(S
2 × S

2) with s =
1

2
β2(M

4)
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WORK IN PROGRESS: Toward 4-dimensional catalogues

In fact, the important results by

[Freedman, The topology of four-dimensional manifolds, J. Differential Geom.
17 (1982), 357-453]

[Donaldson, An application of gauge theory to four-dimensional topology, J.
Differential Geom. 18 (1983), 279-315]

[Furuta, Monopole equation and the 11
8

conjecture, Math. Res. Lett. 8 (2001),
279-291]

ensure that only intersection forms of type

r [1]⊕ r ′[−1] or s

(

0 1
1 0

)

are allowed if k(M4) ≤ 65, since forms of type

±2nE8 ⊕ s

(

0 1
1 0

)

are proved to represent a PL 4-manifold only if s > 2n (and hence, only PL

4-manifolds with β2 ≥ 22 occur in this case).
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WORK IN PROGRESS: Toward 4-dimensional catalogues

RESULTS BY THE FIRST SEGMENT OF 4-DIMENSIONAL
CATALOGUES:

Proposition (to appear)

S4 is the only closed connected (PL) 4-manifold with
gem-complexity 0.

No closed connected (PL) 4-manifold M4 exists with
1 ≤ k(M4) ≤ 2.

The complex projective plane CP
2 is the only closed connected (PL)

4-manifold with k(M4) = 3.

k(S1 × S
3) = k(S1×̃S

3) = 4; moreover, no closed connected
handle-free (PL) 4-manifold M4 exists with k(M4) = 4.

No closed connected (PL) 4-manifold M4 exists with k(M4) = 5.
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WORK IN PROGRESS: Toward 4-dimensional catalogues

RESULTS BY 4-DIMENSIONAL CATALOGUES (UP TO 18
VERTICES): THE NON-ORIENTABLE CASE

Proposition (to appear)

No closed connected handle-free non-orientable (PL) 4-manifold M4

exists with k(M4) ≤ 6.

The real projective space RP
4 is the only closed connected prime

non-orientable (PL) 4-manifold M4 with k(M4) = 7.

No closed connected handle-free non-orientable (PL) 4-manifold M4

exists with 8 ≤ k(M4) ≤ 9.
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WORK IN PROGRESS: Toward 4-dimensional catalogues

RESULTS BY THE 4-DIMENSIONAL CATALOGUES (FROM 14
TO 18 VERTICES): THE ORIENTABLE CASE

Proposition (to appear)

k(S2 × S
2) = 6; moreover, k(CP2#CP

2) = k(CP2#(−CP
2)) = 6,

too.

If M4 is a closed connected handle-free orientable (PL) 4-manifold
with 6 ≤ k(M4) ≤ 9, ) then M4 is simply-connected and
TOP-homeomorphic to either S2 × S2 or CP2#CP

2 or
CP

2#(−CP
2).
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3. Complexity estimations

By making use of the strong connection existing in dimension 3 between
gems and Heegaard diagrams, a 3-manifold invariant based on
crystallization theory - called GM-complexity - has been introduced and
proved to be an upper bound for the Matveev complexity of each
compact 3-manifold.

M.R. C., Computing Matveev’s complexity of non-orientable 3-manifolds via crystallization
theory, Topology Appl. 144 (2004), 201-209.

M.R. C., Estimating Matveev’s complexity via crystallization theory, Discrete Math. 307
(2007), 704-714.

M.R. C. - P. Cristofori, Computing Matveev’s complexity via crystallization theory: the

orientable case, Acta Appl. Math. 92 (2006), 113-123.

M.R. C. - P. Cristofori - M. Mulazzani, Complexity computation for compact 3-manifolds via
crystallizations and Heegaard diagrams, Topology and its Applications (2012), to appear.

M.R. C. - P. Cristofori, Computing Matveev’s complexity via crystallization theory: the
boundary case, preprint 2012.
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3. Estimating Matveev complexity via Heegaard diagrams

If H = (S , v ,w) is a Heegaard diagram of M , then a special spine of M
exists, whose true vertices are the intersection points of the curves of the
two systems v and w , with the exception of those lying on the boundary
of a region of S − {v ∪ w}.

Hence:

c(M) ≤ n −m,

where n = number of intersection points between v and w
and m = number of intersection points contained in R̄.
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∆3 = {α, β, β′, 3}

Kα3 (resp. Kββ′) =
1-dimensional subcomplex
of K (Γ) generated by the
{α, 3}− (resp. {β, β′}−)
labelled vertices.

Hα = the largest
2-dimensional subcomplex
of K ′(Γ) not intersecting
the barycentric subdivisions
of Kα3 e Kββ′.

Fα = |Hα|.
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The surface Fα splits K (Γ) into two polyhedra Aα,3 and Aα′,β′ , whose
intersection is exactly Fα :

Aα3 ց Kα3 (resp. Aββ′ ց Kββ′) =⇒ is an handlebody.

Aα3 ∩ Aββ′ = ∂Aα3 ∩ ∂Aββ′ = Fα.

If Γ is a crystallization, let D be a {β, β′}-coloured cycle and D ′ a
{α, 3}-coloured cycle.

⇓

(Fα, Γββ′ \ D, Γα3 \ D
′) is a Heegaard diagram of M .
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Example: Poincarè homology sphere
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GM-complexity

GM-complexity of a crystallization

cGM(Γ) = min{#V (Γ)−#(V (D) ∪ V (D ′) ∪ V (Ξ)) / α ∈ ∆3,

D ∈ Γββ′ , D ′ ∈ Γα3, Ξ ∈ Rα(D,D ′)}

GM-complexity of a closed 3-manifold

cGM(M) = min{cGM(Γ) | Γ crystallization of M}
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Remark:
The computation of cGM(Γ) is only based on the combinatorial structure
of the edge-coloured graph Γ; hence, it may be determined in an
algorithmic way (GM-COMPLEXITY program).

For details, see:

http://cdm.unimo.it/home/matematica/casali.mariarita/about cgm.htm

By making use of this program, an estimation of c(M) has been obtained
for all manifolds involved in existing crystallization catalogues.

Conjecture

For every closed connected 3-manifold M ,

c(M) = cGM(M).
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GM-complexity: non-contracted case

GM-complexity of a gem

cGM(Γ) = min{#V (Γ)−#(V (D) ∪ V (D′) ∪ V (Ξ)) /

α ∈ ∆2,

D set of {β, β′} − cycles dual to a maximal tree of Kα3,

D′ set of {α, 3} − cycles dual to a maximal tree of Kββ′,

Ξ ∈ Rα(D,D′)}
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Complexity estimations [C. 2007]

The notion of GM-complexity, combined with the widely investigated relationships

between crystallization theory and other representation methods for 3-manifolds, has

allowed to obtain direct estimations of the Matveev complexity for several classes of

manifolds, significantly improving former results.

Proposition. Let M2(L) be the (unique) 2-fold covering of S3 branched
on link L and let L̄ be a p-bridge projection of L with k crossing points
(k ≥ p ≥ 2). If L̄ admits a bridge β̄ with order mb and an independent
arc ᾱ with relative order ma (i.e. an arc not consecutive to β̄ and
containing ma ≥ 0 crossing points not belonging to β̄), then

c(M2(L)) ≤ 2(k + p −mb −ma − 3) ≤ 4k − 8.
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[M. Ferri, Crystallisations of 2-fold branched coverings of S3, Proc. Amer. Math. Soc.

73 (1979), 271-276.]
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Complexity estimations [C. 2007]

Proposition. Let M3(K , ω) be the 3-fold simple covering of S3 branched
on knot K with monodromy ω and let (K̄ , ω) be a 3-coloured diagram of
knot K associated to the pair (K , ω), with k crossing points and an order
m arc. Then

c(M3(K , ω)) ≤ 2k − 2(m+ 2).
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[M.R. C., Coloured knots and coloured graphs representing 3-fold simple coverings of

S3, Discrete Math. 137 (1995), 87-98.]

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY



Basic crystallization theory
Cataloguing PL-manifolds via crystallization theory

Complexity estimations

Complexity estimations [C. 2007]

Proposition. Let M3(L, d) be the 3-manifold obtained by Dehn surgery
on the framed link (L, d) and let L̄ be a planar (connected) diagram of L
with l ≥ 1 components and k crossing points. If L̄ admits a region of
order m whose boundary involves components Lj1 , . . . , Ljs (1 ≤ s ≤ l) of
L, then

c(M3(L, d)) ≤ 6k + 2t − 4l − 2(m − 1)−
∑

p=1,...,s

tjp ,

where t =
∑

i=1,...,l ti and ti = |di − w(L̄i )|, ∀i = 1, . . . , l .
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[M.R. C., From framed links to crystallizations of bounded 4-manifolds, J. Knot

Theory Ramifications 9 (2000), 443-458.]
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case ∂M 6= ∅

∂Aα3 ∩ ∂Aββ′ = Fα

∂Aα3 ∩ ∂M =
⋃r

i=1Di

∂Di = lk(vi , (∂K )′)
vi α−labelled vertex of ∂K⋃r

i=1 ∂Di = ∂Fα

Sα = Fα ∪ (
⋃r

i=1Di )

C = Sα × [−1,+1] collar of
Sα in Aα3

C− = Sα × [−1, 0]
C+ = Sα × [0,+1]
Ci = Sα × {i}

Xα = Aα3 \ C−

Yα = Aββ′ ∪ C−
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Xα is an handlebody obtained from C+ by attaching 2-handles to C1

along the {β, β′}-coloured cycles of Γ (dual to the edges of Kα3).

Yα is a compression body3, obtained from C− by attaching
2-handles to C−1 along the {α, 3}-coloured cycles of Γ (dual to
edges of Kββ′ not belonging to ∂K ).

⇓
(Sα,Xα,Yα) is a (generalized) Heegaard splitting of M .

3A compression body is a 3-manifold with boundary obtained from a F × I (F
surface) by attaching 2-handles and 3-handles to F × {1}.
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GM-complexity of a gem with boundary

(a) D = set of {β, β′}- coloured cycles dual to a maximal tree of Kα3.

(b) Gββ′ = graph obtained from Kββ′ by contracting to one point pi
(for each i = 1, . . . , r) the vertices of Kββ′ belonging to the i-th
component of ∂K .

(c) D′ = set of {α, 3}-coloured cycles dual to the edges of a subgraph
Ḡ of Gββ′ such that Ḡ is a union of trees containing all vertices of
Gββ′ and, ∀i , j , i 6= j , the vertices pi and pj belong to different
connected components of Ḡ .

GM-complexity of a gem with boundary

cGM(Γ) = min{#V (Γ)−#(V (D) ∪ V (D′) ∪ V (Ξ)) /

α ∈ ∆2,

D,D′ satisfying (a) and (c)

Ξ ∈ Rα(D,D′)}
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GM-complexity of a 3-manifold with boundary

GM-complexity of a 3-manifold with boundary

cGM(M) = min{cGM(Γ) | Γ gem of M}

By definition itself:

Proposition [C.-Cristofori 2012]

For each compact 3-manifold M ,

c(M) ≤ cGM(M)
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WORK IN PROGRESS:

estimations via cGM (boundary case)

By making use of the notion of GM-complexity for 3-manifolds with
boundary, we hope to obtain - via graph theoretical construction of the
associated gems - improvements for existing estimations of Matveev
complexity for some interesting classes of bounded 3-manifolds.

The first efforts will take into considerations

knot (or link) complements.

Maria Rita Casali UP-TO-DATE RESULTS IN CRYSTALLIZATION THEORY


	Basic crystallization theory
	Cataloguing PL-manifolds via crystallization theory
	Complexity estimations

