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1. Abstract

Crystallization theory is a graph-theoretical representation method for compact
PL-manifolds of arbitrary dimension, with or without boundary, which makes use
of a particular class of edge-coloured graphs, which are dual to coloured (pseudo-)
triangulations. These graphs are usually called gems, i.e. Graphs Encoding Man-
ifolds, or crystallizations if the associated triangulation has the minimal number
of vertices.
One of the principal features of crystallization theory relies on the purely combina-
torial nature of the representing objects, which makes them particularly suitable
for computer manipulation.

The present talk focuses on up-to-date results about:

- generation of catalogues of PL-manifolds for increasing values of the vertex
number of the representing graphs;

- definition and/or computation of invariants for PL-manifolds, directly
from the representing graphs.

2. Cataloguing PL-manifolds via crystallization theory

Tables of crystallizations have been obtained in dimension 3, and are in progress
in dimension 4: the main tool for their generation is the code, a numerical “string”
which completely describes the combinatorial structure of a coloured graph, up to
colour-isomorphisms ([12]). Afterwards suitable moves on gems, translating the
PL-homeomorphism of the represented manifolds, are applied to develop a clas-
sification procedure which allows to detect crystallizations of the same manifold;
this is the starting point toward the identification of the manifolds represented
in the catalogues (see [7] and related C++ programs - jointly elaborated with P.
Cristofori -, whose codes have been recently parallelized in order to obtain a better
performance1).

It is worthwhile noting that in dimension 3 the above automatic partition into
equivalence classes succeeds to distinguish topologically all manifolds represented
by the generated catalogues. This allows to classify the 110 (resp. 16) closed prime
orientable (resp. non-orientable) 3-manifolds having a coloured triangulation with
at most 30 tetrahedra. The obtained results comprehend the JSJ-decomposition of
all involved manifolds, together with the computation of their Matveev complexity
and geometry: see [8] and [9] for the orientable case and [4], [5] and [1] for the
non-orientable one.

1We expect to succeed in significantly extending crystallization catalogues, both in dimension
three and in dimension four, by optimizing the code and by exploiting high-powered computers,

in virtue of the Italian Supercomputing Resource Allocation (ISCRA) project “Cataloguing PL-
manifolds in dimension 3 and 4 via crystallization theory”, supported by CINECA.
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Experimental data from these catalogues also yield interesting information in
order to compare Matveev complexity with the so-called gem-complexity of a closed
3-manifold M , which involves the minimum order of a crystallization of M ([2]).2

As far as dimension 4 is concerned, the generation of manifolds catalogues
implies the previous generation of all gems (not necessarily crystallizations) repre-
senting 3-dimensional spheres up to a fixed order; moreover, suitable sequences of
combinatorial moves realizing the PL-classification of the represented 4-manifolds
have to be chosen and implemented (see [3] and [17]).

The initial segment of 4-dimensional crystallizations catalogue allows to:

- characterize S4 (resp. CP2) (resp. S1 × S3 and S1×̃S3) among closed
4-manifolds by means of gem-complexity 0 (resp. 3) (resp. 4);

- check that no other closed handle-free 4-manifold exists with gem-complexity
≤ 5;

- check that RP4 has gem-complexity 7 and no other closed non-orientable
handle-free 4-manifold exists with gem-complexity ≤ 9;3

- check that S2 × S2, CP2#CP2 and CP2#(−CP2) have gem-complexity 6
and any other closed orientable handle-free 4-manifold with gem-complexity
k, 6 ≤ k ≤ 9, is TOP-homeomorphic to one of them.

Note that the PL-classification of the elements of our catalogue might provide
interesting examples of different PL 4-manifolds triangulating the same topological
4-manifold. In fact, known properties of crystallizations, combined with the up-
to-date topological classification of simply connected PL 4-manifolds (see [15], [14]
and [16]), allow to prove that:
if M4 is a simply connected closed PL 4-manifold with gem-complexity k ≤ 65, then
M4 is TOP-homeomorphic to either (#rCP2)#(#r′ −CP2) with r+r′ = β2(M

4)
or #s(S2 × S2) with s = 1

2β2(M
4).

3. Complexity estimations

By making use of the strong connection existing in dimension 3 between gems
and Heegaard diagrams, a 3-manifold invariant based on crystallization theory -
called GM -complexity - has been introduced and proved to be an upper bound for
the Matveev complexity of each compact 3-manifold (see [5], [6] and [8] for the
closed case and [10] for the boundary case).

Experimental results concerning 3-manifolds admitting a crystallization with
“few” vertices (namely less than 32), suggests the sharpness of this bound for all
closed 3-manifolds.

2The gem-complexity of a closed n−manifold Mn is the non-negative integer k(Mn) = p−1,
2p being the minimum order of a crystallization of Mn.

3Actually, the standard order 16 crystallization of RP4 turns out to be the unique non-

bipartite 5-coloured graph, within the catalogue of all rigid crystallizations lacking in dipoles up
to 20 vertices.
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The notion of GM -complexity, combined with the widely investigated rela-
tionships between crystallization theory and other representation methods for 3-
manifolds, has allowed to obtain direct estimations of the Matveev complexity for
several classes of manifolds, significantly improving former results: this happens,
in particular, for two-fold branched coverings of S3, for three-fold simple branched
coverings of S3, and for 3-manifolds obtained by Dehn surgery on framed links in
S3 (see [6]).

Moreover, GM -complexity has been proved to coincide with the so called modi-
fied Heegaard complexity, another 3-manifold invariant introduced in [13] (by mak-
ing use of generalized Heegaard diagrams) as an approach to Matveev complexity
computation: see [11].
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